SIMBAD references

2018ApJ...863..176M - Astrophys. J., 863, 176-176 (2018/August-3)

Nucleosynthesis constraints on the explosion mechanism for Type Ia supernovae.

MORI K., FAMIANO M.A., KAJINO T., SUZUKI T., GARNAVICH P.M., MATHEWS G.J., DIEHL R., LEUNG S.-C. and NOMOTO K.

Abstract (from CDS):

Observations of type Ia supernovae (SNe Ia) include information about the characteristic nucleosynthesis associated with these thermonuclear explosions. We consider observational constraints from iron-group elemental and isotopic ratios, to compare with various models obtained with the most realistic recent treatment of electron captures (ECs). The nucleosynthesis is sensitive to the highest white-dwarf central densities. Hence, nucleosynthesis yields can distinguish high-density Chandrasekhar-mass models from lower-density burning models such as white-dwarf mergers. We discuss new results of post-processing nucleosynthesis for two spherical models (deflagration and/or delayed-detonation models) based upon new EC rates. We also consider cylindrical and 3D explosion models (including deflagration, delayed-detonation, or a violent merger model). Although there are uncertainties in the observational constraints, we identify some trends in the observations and the models. We make a new comparison of the models with elemental and isotopic ratios from five observed supernovae and three supernova remnants. We find that the models and data tend to fall into two groups. In one group, low-density cores such as in a 3D merger model are slightly more consistent with the nucleosynthesis data, while the other group is slightly better identified with higher-density cores such as in single-degenerate 1D-3D deflagration models. Hence, we postulate that both types of environments appear to contribute nearly equally to observed SN Ia. We also note that observational constraints on the yields of 54Cr and 54Fe, if available, might be used as a means to clarify the degree of geometrical symmetry of SN Ia explosions.

Abstract Copyright: © 2018. The American Astronomical Society. All rights reserved.

Journal keyword(s): nuclear reactions, nucleosynthesis, abundances - supernovae: general - white dwarfs

Simbad objects: 9

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2018ApJ...863..176M and select 'bookmark this link' or equivalent in the popup menu