SIMBAD references

2018ApJ...854..172C - Astrophys. J., 854, 172-172 (2018/February-3)

A self-consistent cloud model for brown dwarfs and young giant exoplanets: comparison with photometric and spectroscopic observations.


Abstract (from CDS):

We developed a simple, physical, and self-consistent cloud model for brown dwarfs and young giant exoplanets. We compared different parametrizations for the cloud particle size, by fixing either particle radii or the mixing efficiency (parameter fsed), or by estimating particle radii from simple microphysics. The cloud scheme with simple microphysics appears to be the best parametrization by successfully reproducing the observed photometry and spectra of brown dwarfs and young giant exoplanets. In particular, it reproduces the L-T transition, due to the condensation of silicate and iron clouds below the visible/near-IR photosphere. It also reproduces the reddening observed for low-gravity objects, due to an increase of cloud optical depth for low gravity. In addition, we found that the cloud greenhouse effect shifts chemical equilibrium, increasing the abundances of species stable at high temperature. This effect should significantly contribute to the strong variation of methane abundance at the L-T transition and to the methane depletion observed on young exoplanets. Finally, we predict the existence of a continuum of brown dwarfs and exoplanets for absolute J magnitude = 15-18 and J-K color = 0-3, due to the evolution of the L-T transition with gravity. This self-consistent model therefore provides a general framework to understand the effects of clouds and appears well-suited for atmospheric retrievals.

Abstract Copyright: © 2018. The American Astronomical Society. All rights reserved.

Journal keyword(s): brown dwarfs - planets and satellites: atmospheres - planets and satellites: gaseous planets

Simbad objects: 13

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2018ApJ...854..172C and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact