SIMBAD references

2017MNRAS.467.1857B - Mon. Not. R. Astron. Soc., 467, 1857-1873 (2017/May-2)

Globular cluster formation with multiple stellar populations from hierarchical star cluster complexes.


Abstract (from CDS):

Most old globular clusters (GCs) in the Galaxy are observed to have internal chemical abundance spreads in light elements. We discuss a new GC formation scenario based on hierarchical star formation within fractal molecular clouds. In the new scenario, a cluster of bound and unbound star clusters ('star cluster complex', SCC) that have a power-law cluster mass function with a slope (β) of 2 is first formed from a massive gas clump developed in a dwarf galaxy. Such cluster complexes and β = 2 are observed and expected from hierarchical star formation. The most massive star cluster ('main cluster'), which is the progenitor of a GC, can accrete gas ejected from asymptotic giant branch (AGB) stars initially in the cluster and other low-mass clusters before the clusters are tidally stripped or destroyed to become field stars in the dwarf. The SCC is initially embedded in a giant gas hole created by numerous supernovae of the SCC so that cold gas outside the hole can be accreted on to the main cluster later. New stars formed from the accreted gas have chemical abundances that are different from those of the original SCC. Using hydrodynamical simulations of GC formation based on this scenario, we show that the main cluster with the initial mass as large as [2-5] x 105 M can accrete more than 105 M gas from AGB stars of the SCC. We suggest that merging of hierarchical SSCs can play key roles in stellar halo formation around GCs and self-enrichment processes in the early phase of GC formation.

Abstract Copyright: © 2017 The Author Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): stars: formation - globular clusters: general - galaxies: ISM - galaxies: star clusters: general - galaxies: stellar content - galaxies: stellar content

Simbad objects: 23

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2017MNRAS.467.1857B and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact