SIMBAD references

2017ApJ...849...18C - Astrophys. J., 849, 18-18 (2017/November-8)

The dependence of convective core overshooting on stellar mass: a semi-empirical determination using the diffusive approach with two different element mixtures.


Abstract (from CDS):

Convective core overshooting has a strong influence on the evolution of stars of moderate and high mass. Studies of double-lined eclipsing binaries and stellar oscillations have renewed interest in the possible dependence of overshooting on stellar mass, which has been poorly constrained by observations so far. Here, we have used a sample of 29 well-studied double-lined eclipsing binaries in key locations of the H-R diagram to establish the explicit dependence of fov on mass, where fov is the free parameter in the diffusive approximation to overshooting. Measurements of the masses, radii, and temperatures of the binary components were compared against stellar evolution calculations based on the MESA code to infer semi-empirical values of fov for each component. We find a clear mass-dependence such that fov rises sharply from zero in the range 1.2–2.0 M, and levels off thereafter up to the 4.4 M limit of our sample. Tests with two different element mixtures indicate the trend is the same, and we find it to also be qualitatively similar to the one established in our previous study with the classical step-function implementation of overshooting characterized by the free parameter αov. Based on these measurements, we infer an approximate relationship between the two overshooting parameters of αov/fov=11.36±0.22, with a possible dependence on stellar properties.

Abstract Copyright: © 2017. The American Astronomical Society. All rights reserved.

Journal keyword(s): binaries: eclipsing - convection - stars: evolution - stars: interiors - stars: interiors

Simbad objects: 38

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2017ApJ...849...18C and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact