SIMBAD references

2017ApJ...838...25G - Astrophys. J., 838, 25-25 (2017/March-3)

The metallicity distribution and hot Jupiter rate of the Kepler field: Hectochelle high-resolution spectroscopy for 776 Kepler target stars.

GUO X., JOHNSON J.A., MANN A.W., KRAUS A.L., CURTIS J.L. and LATHAM D.W.

Abstract (from CDS):

The occurrence rate of hot Jupiters from the Kepler transit survey is roughly half that of radial velocity surveys targeting solar neighborhood stars. One hypothesis to explain this difference is that the two surveys target stars with different stellar metallicity distributions. To test this hypothesis, we measure the metallicity distribution of the Kepler targets using the Hectochelle multi-fiber, high-resolution spectrograph. Limiting our spectroscopic analysis to 610 dwarf stars in our sample with logg > 3.5, we measure a metallicity distribution characterized by a mean of [M/H]mean=-0.045±0.009, in agreement with previous studies of the Kepler field target stars. In comparison, the metallicity distribution of the California Planet Search radial velocity sample has a mean of [M/H]CPS,mean=-0.005±0.006, and the samples come from different parent populations according to a Kolmogorov-Smirnov test. We refit the exponential relation between the fraction of stars hosting a close-in giant planet and the host star metallicity using a sample of dwarf stars from the California Planet Search with updated metallicities. The best-fit relation tells us that the difference in metallicity between the two samples is insufficient to explain the discrepant hot Jupiter occurrence rates; the metallicity difference would need to be ≃0.2-0.3 dex for perfect agreement. We also show that (sub)giant contamination in the Kepler sample cannot reconcile the two occurrence calculations. We conclude that other factors, such as binary contamination and imperfect stellar properties, must also be at play.

Abstract Copyright: © 2017. The American Astronomical Society. All rights reserved.

Journal keyword(s): catalogs - methods: statistical - planets and satellites: detection - stars: abundances - stars: fundamental parameters - techniques: imaging spectroscopy - techniques: imaging spectroscopy

VizieR on-line data: <Available at CDS (J/ApJ/838/25): table2.dat>

Simbad objects: 778

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2017ApJ...838...25G and select 'bookmark this link' or equivalent in the popup menu