2017ApJ...835..204X


Query : 2017ApJ...835..204X

2017ApJ...835..204X - Astrophys. J., 835, 204-204 (2017/February-1)

Possible outcomes of Coplanar High-eccentricity Migration: hot Jupiters, close-in super-Earths, and counter-orbiting planets.

XUE Y., MASUDA K. and SUTO Y.

Abstract (from CDS):

We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m1 ≪ m0 and m1 ≪ m2. In addition to the gravity for point masses, we examine the importance of the short-range forces, and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.

Abstract Copyright: © 2017. The American Astronomical Society. All rights reserved.

Journal keyword(s): planets and satellites: formation - planets and satellites: general - planet-star interactions - planet-star interactions

Simbad objects: 14

goto Full paper

goto View the references in ADS

Number of rows : 14
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 WASP-22 * 03 31 16.3267124400 -23 49 10.840600632   12.38 11.99 11.41   G 53 1
2 BD+36 2593 * 15 19 57.9203617176 +36 13 46.738078788   11.83 11.12     F 99 1
3 HD 147506 * 16 20 36.3576063720 +41 02 53.106772488   9.15 8.69     F8V 155 2
4 BD+38 2917 * 17 20 27.8781604680 +38 14 31.908984936   10.41 9.99     F5V 60 1
5 BD+38 2917b Pl 17 20 27.8782981532 +38 14 31.909663582           ~ 63 1
6 Kepler-407 Ro* 19 04 08.7180702936 +49 36 52.219314504           ~ 59 0
7 Kepler-97 Ro* 19 09 18.3874144296 +48 40 24.368309184           G0V 55 0
8 BD+38 3583 Ro* 19 25 40.3885404552 +38 40 20.413186860   10.73 10.00     G5V 95 0
9 BD+47 2846b Pl 19 28 59.3538131541 +47 58 10.216250846           ~ 338 1
10 BD+47 2846 Er* 19 28 59.3538826128 +47 58 10.217007804   10.97 10.48     F6V 284 2
11 Kepler-78b Pl 19 34 58.0139307295 +44 26 53.957326851           ~ 128 1
12 HAT-P-17 PM* 21 38 08.7310010424 +30 29 19.446386748   11.33 10.38 10.24   G0 54 1
13 BD+41 4831b Pl 23 39 05.8101319829 +42 27 57.503480354           ~ 80 1
14 BD+41 4831 * 23 39 05.8102996968 +42 27 57.505293900   10.88 10.47     F8V 78 1

To bookmark this query, right click on this link: simbad:objects in 2017ApJ...835..204X and select 'bookmark this link' or equivalent in the popup menu


2022.11.26-10:47:00

© Université de Strasbourg/CNRS

    • Contact