2017A&A...601A..14M


Query : 2017A&A...601A..14M

2017A&A...601A..14M - Astronomy and Astrophysics, volume 601A, 14-14 (2017/5-1)

Ap stars with resolved magnetically split lines: Magnetic field determinations from Stokes I and V spectra.

MATHYS G.

Abstract (from CDS):

Context. Some Ap stars that have a strong enough magnetic field and a sufficiently low vsini show spectral lines resolved into their magnetically split components.
Aims. We present the results of a systematic study of the magnetic fields and other properties of those stars.
Methods. This study is based on 271 new measurements of the mean magnetic field modulus <B> of 43 stars, 231 determinations of the mean longitudinal magnetic field <Bz> and of the crossover <Xz> of 34 stars, and 229 determinations of the mean quadratic magnetic field <Bq> of 33 stars. Those data were used to derive new values or meaningful lower limits of the rotation periods Prot of 21 stars. Variation curves of the mean field modulus were characterised for 25 stars, the variations of the longitudinal field were characterised for 16 stars, and the variations of the crossover and of the quadratic field were characterised for 8 stars. Our data are complemented by magnetic measurements from the literature for 41 additional stars with magnetically resolved lines. Phase coverage is sufficient to define the curve of variation of <B> for 2 of these stars. Published data were also used to characterise the <Bz> curves of variation for 10 more stars. Furthermore, we present 1297 radial velocity measurements of the 43 Ap stars in our sample that have magnetically resolved lines. Nine of these stars are spectroscopic binaries for which new orbital elements were derived.
Results. The existence of a cut-off at the low end of the distribution of the phase-averaged mean magnetic field moduli <B>av of the Ap stars with resolved magnetically split lines, at about 2.8kG, is confirmed. This reflects the probable existence of a gap in the distribution of the magnetic field strengths in slowly rotating Ap stars, below which there is a separate population of stars with fields weaker than ∼2kG. In more than half of the stars with magnetically resolved lines that have a rotation period shorter than 150 days, <B>av>7.5kG, while those stars with a longer period all have <B>av<7.5kG. The difference between the two groups is significant at the 100.0% confidence level. The relative amplitudes of variation of the mean field modulus may tend to be greater in stars with Prot>100d than in shorter period stars. The root-mean-square longitudinal fields of all the studied stars but one is less than one-third of their phased-average mean field moduli, which is consistent with the expected behaviour for fields whose geometrical structure resembles a centred dipole. However, moderate but significant departures from the latter are frequent. Crossover resulting from the correlation between the Zeeman effect and the rotation-induced Doppler effect across the stellar surface is definitely detected in stars with rotation periods of up to 130 days and possibly even up to 500 days. Weak, but formally significant crossover of constant sign, has also been observed in a number of longer period stars, which could potentially be caused by pulsation velocity gradients across the depth of the photosphere. The quadratic field is in average ∼1.3 times greater than the mean field modulus and both of those moments vary with similar relative amplitudes and almost in phase in most stars. Rare exceptions almost certainly have unusual field structures. The distribution of the known values and lower limits of the rotation periods of the Ap stars with magnetically resolved lines indicates that for some of them, Prot must almost certainly reach 300 yr or possibly even much higher values. Of the 43 Ap stars that we studied in detail, 22 are in binary systems. The shortest orbital period Porb of those systems is 27 days. For those non-synchronised Ap binaries for which both the rotation period and the orbital period, or meaningful lower limits thereof, are reliably determined, the distribution of the orbital periods of the systems in which the Ap star has a rotation period that is shorter than 50 days is different from its distribution for those systems in which the rotation period of the Ap star is longer, at a confidence level of 99.6%. The shortest rotation and orbital periods are mutually exclusive: all but one of the non-synchronised systems that contain an Ap component with Prot<50d, have Porb>1000 d.
Conclusions. Stars with resolved magnetically split lines represent a significant fraction, of the order of several percent, of the whole population of Ap stars. Most of these stars are genuine slow rotators, whose consideration provides new insight into the long-period tail of the distribution of the periods of Ap stars. Emerging correlations between rotation periods and magnetic properties provide important clues for the understanding of the braking mechanisms that have been at play in the early stages of stellar evolution. The geometrical structures of the magnetic fields of Ap stars with magnetically resolved lines appear in general to depart slightly, but not extremely, from centred dipoles. However, there are a few remarkable exceptions, which deserve further consideration. Confirmation that pulsational crossover is indeed occurring at a detectable level would open the door to the study of non-radial pulsation modes of degree l, which is too high for photometric or spectroscopic observations. How the lack of short orbital periods among binaries containing an Ap component with magnetically resolved lines is related to their (extremely) slow rotation remains to be fully understood, but the very existence of a correlation between the two periods lends support to the merger scenario for the origin of Ap stars.

Abstract Copyright: © ESO, 2017

Journal keyword(s): stars: chemically peculiar - stars: magnetic field - stars: rotation - binaries: general - stars: oscillations - stars: oscillations

VizieR on-line data: <Available at CDS (J/A+A/601/A14): table1.dat apres_rv.dat>

Simbad objects: 131

goto Full paper

goto View the references in ADS

Number of rows : 131
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 HD 965 Pe* 00 14 04.0648431696 -00 02 00.098903652   8.94 8.57     A1III-IVSrSiEu 75 0
2 V* GR And a2* 00 28 28.5694460472 +32 26 15.875756412   6.99 6.91     A5VpSiSrCr 145 0
3 HD 3988 SB* 00 39 15.3393329208 -83 01 58.520691228   8.51 8.35     ApCrEu 21 0
4 HD 5550 SB* 00 58 31.0619888328 +66 21 06.457611996 5.82 5.95 5.97     A0III 59 0
5 V* HN And a2* 01 24 18.6765786624 +43 08 31.629475248   6.704 6.676     A4VpSrSi 144 0
6 V* GY And a2* 01 38 31.8255225672 +45 23 58.935650100   6.343 6.380     A2:VpSiSrCrEu 258 0
7 HD 12288 a2* 02 03 30.5070540192 +69 34 56.268492384   7.83 7.74     A0pCrSi 105 0
8 V* V436 And a2* 02 21 02.6744002704 +42 56 38.228602596   7.24 7.27     B9pSrCrEu 68 0
9 HD 15144 a2* 02 26 00.3479612520 -15 20 28.495226652 6.06 5.97 5.83 5.71 5.67 A3VpSrCrEu 180 0
10 * iot Cas a2* 02 29 03.94780 +67 24 08.9170           ~ 261 0
11 HD 18610 * 02 54 18.0034583328 -73 27 09.941734692   8.48 8.14     ApEuCrSr 39 0
12 HD 18078 a2* 02 56 32.0098959576 +56 10 41.434633848   8.50 8.27     A0pSrCr 92 0
13 HD 22128 SB* 03 33 37.9173806232 -07 24 54.019826100   7.97 7.56     kA5hF2mF3(V)Eu 48 0
14 * tau09 Eri a2* 03 59 55.4837679360 -24 00 58.377195468 4.11 4.52 4.66 4.64 4.77 ApSi 167 0
15 * 41 Tau a2* 04 06 36.4125948768 +27 35 59.640149616   5.041 5.172     Ap 238 0
16 HD 29578 * 04 36 30.7825149216 -54 37 16.161212064   8.82 8.51     ApSrEuCr 39 0
17 HD 33629 * 05 10 05.7816179040 -33 46 45.677308260   9.41 9.03     ApSrCr(Eu) 19 0
18 HD 42075 * 06 07 36.9292030032 -26 37 15.689309052   9.35 8.98     ApEuCrSr 13 0
19 HD 44226 * 06 19 34.7596595472 -25 19 42.121456248   9.82 9.46     ApSrEuCr 13 0
20 HD 46665 * 06 33 41.1262939800 -22 41 45.397324032   9.57 9.43     ApSrEu 19 0
21 HD 47009 ** 06 35 48.5754946608 -13 44 49.590743280   9.25 9.06     ApEuCr(Sr) 17 0
22 HD 47103 Pe* 06 37 44.0721500952 +19 56 55.155035652   9.38 9.16     A1IV-VSrSiEu 31 0
23 HD 50169 Em* 06 51 59.2280506608 -01 38 40.392118428   9.01 8.98     ApEuSrCr 101 0
24 HD 51684 ** 06 56 29.8894824432 -40 59 25.049785740   8.25 7.94     ApSrEuCr 46 0
25 HD 52847 * 07 01 46.3433269920 -23 06 20.442699288   8.41 8.13     ApCrEu(Sr) 22 0
26 HD 54908 SB* 07 10 38.9711276736 -01 50 34.410735384   8.27 7.97     A1mA5/7-F2 24 0
27 * E Pup SB* 07 12 15.8070021456 -40 29 55.755380940   5.38 5.31     A1/2V:+ApSrEu 106 0
28 HD 55540 * 07 12 30.4239686832 -21 03 53.772602868   9.39 9.37     ApEuCr 19 0
29 HD 57040 a2* 07 16 42.2413712736 -53 26 13.116548076   9.76 9.24     A(pEuSr) 17 0
30 HD 56495 SB* 07 16 57.7438837392 -07 31 39.068554188   7.96 7.65     kA4hF0mF2(III) 49 0
31 V* V827 Mon a2* 07 29 35.4521242104 -09 15 33.316115832   8.40 7.94     A6IIIpSr 70 0
32 HD 61468 * 07 38 22.5733055688 -27 52 07.624483464   9.86 9.83     ApEuCr(Sr) 28 0
33 HD 61513 * 07 38 27.4642819896 -30 03 48.675293856   10.16 10.11     ApCrEuSr 9 0
34 HD 66318 * 07 59 27.4731907320 -60 47 47.144978988   9.69 9.56   9.555 A2:IV:pSiSrCr 95 0
35 * 53 Cam a2* 08 01 42.4403874648 +60 19 27.806833200   6.177 6.008     A3VpSrSiCrEu 400 0
36 * 15 Cnc a2* 08 13 08.8680600240 +29 39 23.536760076   5.541 5.605     B8VpSi 131 0
37 HD 69013 * 08 14 28.9689055920 -15 46 31.486504584   10.06 9.56     ApEuSr 25 0
38 HD 70331 * 08 19 17.3405180184 -48 04 09.936235560   8.79 8.85     B7/8II/III(pSi) 33 0
39 HD 70702 * 08 21 00.8179235640 -51 32 36.847901400   8.56 8.57     ApEuCrSr 10 0
40 HD 72316 * 08 30 58.5100598928 -33 38 03.919804548   8.85 8.75     ApEuCr(Sr) 19 0
41 HD 73709 SB* 08 40 20.7479143752 +19 41 12.242993316   7.87 7.68     kA2hA5mF0(III-IV)(Cr) 107 0
42 * b Cnc a2* 08 44 45.0357084768 +10 04 54.007285728 5.30 5.55 5.66     A1VpHgMnSiEu 185 0
43 HD 75049 a2* 08 45 33.0714336288 -50 43 58.323425736   9.09 9.14     ApEuCr 33 0
44 HD 75445 PM* 08 48 42.9334141680 -39 14 01.940046864   7.40 7.12     ApSrEu(Cr) 60 0
45 HD 76460 * 08 53 08.3801914008 -62 26 42.137312892   10.18 9.80     ApSr 14 0
46 * nu. Cnc SB* 09 02 44.2677118128 +24 27 10.392222600   5.404 5.447     A0III 199 0
47 V* KU Hya a2* 09 22 50.8563427 -09 50 19.659199 6.86 6.75 6.53     ApEuCrSr 168 0
48 HD 81588 * 09 24 54.4141546032 -48 29 07.357356492   8.72 8.45     ApSrCrEu 31 0
49 HD 83368 a2* 09 36 25.4255061727 -48 45 04.240404102   6.49 6.23     A8VSrCrEu 269 0
50 HD 88241 SB* 10 09 27.5324278320 -40 28 26.415262236   8.95 8.59     ApSr(EuCr) 24 0
51 HD 88701 a2* 10 13 00.2268857952 -37 30 12.435153768   9.34 9.27     ApCrSi 22 0
52 * 45 Leo a2* 10 27 38.9889218664 +09 45 44.610005160 5.89 5.98 6.04     B9.5IV-VpSiCrSr(Mn) 138 0
53 HD 92499 * 10 40 08.5912210416 -43 04 50.514871224   9.29 8.88     ApSrEuCr 40 0
54 HD 93507 * 10 45 50.6290991136 -68 07 49.572675228   8.47 8.44     ApSiCrpec 47 0
55 V* KQ Vel a2* 10 55 01.0131717072 -42 15 03.962480184 5.78 6.03 6.11     Ap(SiCr) 134 0
56 V* TX Crt a2* 11 05 34.0436531568 -25 01 09.250435488   9.88 9.45     ApSrEuCr 41 0
57 HD 96446 bC? 11 06 05.8219128840 -59 56 59.564064444 5.81 6.57 6.69     B2IIIp 168 0
58 HD 97394 SB* 11 12 01.2728102112 -43 40 37.135474068   9.06 8.76     ApEuCrSr 32 0
59 HD 98088 a2* 11 16 58.1772734352 -07 08 04.869775428 6.49 6.34 6.14     ApSrCrEu 202 0
60 V* V816 Cen dS* 11 37 37.0409608152 -46 42 34.877876832 8.99 8.79 8.03     F8/G0p 320 0
61 HD 105680 SB* 12 09 59.4153461712 +22 38 22.582100292   8.37 8.06     kA5hF0mF3(III) 51 0
62 * 21 Com a2* 12 31 00.5605002264 +24 34 01.797245328   5.496 5.436     A2pv 283 0
63 V* AX CVn a2* 12 39 16.8606994152 +35 57 07.050433068   6.466 6.385     A0pSrCrEuKsn 175 0
64 HD 110274 a2* 12 41 30.9550835424 -58 55 24.408169248   9.75 9.47     ApEuCr 30 0
65 HD 116114 PM* 13 21 46.3079033856 -18 44 31.563482928   7.34 7.02     F0VpSrCrEu 140 0
66 * 67 Mus SB* 13 25 50.3011677024 -70 37 38.109211896   5.626 5.651     ApHg(Mn) 125 0
67 HD 117290 a2* 13 30 13.1939009352 -49 07 58.681076520   9.51 9.25     ApEuCrSr 15 0
68 V* LZ Hya a2* 13 41 19.8267324192 -28 46 59.793276288   10.41 9.92 9.63 9.659 ApSrEu(Cr) 49 0
69 V* V827 Cen a2* 13 44 16.0025041176 -51 00 44.822666448   6.323 6.440     ApSiCr 107 0
70 HD 121661 a2* 13 58 42.4175444236 -62 43 07.055571719   8.65 8.56     ApSiCr 26 0
71 V* V883 Cen SB* 14 08 56.2530021000 -59 16 36.154960536 5.89 6.352 6.339     B3V+B8V 67 0
72 V* CS Vir a2* 14 18 38.2505609712 -18 42 57.465294264 5.86 5.90 5.90     ApSi(Cr) 313 0
73 V* FF Vir a2* 14 25 55.8786309720 +00 59 33.756435456 7.07 7.09 7.07     ApEuSrCr 174 0
74 * alf Cir a2* 14 42 30.4206520931 -64 58 30.478845491 3.55 3.43 3.19 2.96 2.86 A7VpSrCrEu 364 0
75 V* HI Lib a2* 15 09 02.4051867312 -13 59 58.675373736   7.84 7.46     F2VpSrCrEu 131 0
76 HD 133792 * 15 09 25.5217838448 -63 38 34.549433448   6.298 6.247     ApSrCrEu 77 0
77 * iot Lib SB* 15 12 13.2902543 -19 47 30.159216 4.08 4.46 4.54 4.58 4.67 B9IVpSi 176 0
78 HD 135728 * 15 17 38.8403522376 -31 27 32.144715432   9.00 8.65     ApSrEuCr 30 0
79 * bet CrB a2* 15 27 49.7540595700 +29 06 20.494640434 4.08 3.97 3.68 3.50 3.45 F2VpSrCrEuSi 686 0
80 * 33 Lib a2* 15 29 34.7424021408 -17 26 27.377921220 7.22 7.07 6.69     F0VspEuGdSr 252 0
81 V* NN Aps a2* 15 31 27.1154643312 -71 03 43.664769144   6.76 6.87     Ap(SiCrFe) 92 0
82 HD 138426 SB* 15 32 34.1020918296 -19 24 09.881106264   8.68 8.57     ApSrCr(Eu) 24 0
83 HD 138633 * 15 33 34.0312079208 -11 03 54.804550248   9.01 8.63     ApSrEuCr 19 0
84 V* V373 Ser a2* 15 52 35.0679747816 -01 01 52.823239248   8.16 7.97     B9V 53 0
85 HD 143487 SB* 16 01 44.2211390328 -30 54 56.822787720   10.05 9.43     Apec 25 0
86 HD 144897 * 16 09 51.1821697368 -41 09 27.768423492   8.81 8.59     ApEuCr 54 0
87 HD 144987 PM* 16 09 52.5898714152 -33 32 44.903550228   5.410 5.497     B8V 41 0
88 V* V933 Sco a2* 16 20 05.4927999744 -20 03 23.030685720   7.56 7.40     B8:VpSrTiSiEu 191 0
89 * o Her SB* 16 24 10.8287527392 +06 56 53.557789740   5.828 5.819     A1III 77 0
90 V* V835 Ara a2* 16 44 11.4498857664 -48 39 18.114773796   10.40 9.91     A/F(pEu) 36 0
91 V* V451 Her a2* 17 01 33.0515292528 +14 56 58.988031648 6.39 6.35 6.31     A0VpSiSrCrEu 177 0
92 HD 154708 a2* 17 10 28.5163457616 -58 00 17.416695708   9.23 8.76     ApSrEu 86 0
93 HD 157751 * 17 26 41.1938555088 -34 05 32.487196416   7.60 7.62     ApSiCr(Sr) 43 0
94 HD 158450 ** 17 29 43.9848254928 -08 01 03.169337592   8.91 8.55     ApSi(Cr) 40 0
95 V* V970 Sco a2* 17 39 41.2405860216 -32 17 57.527626920   9.38 9.34     ~ 66 0
96 HD 162316 a2* 17 59 07.9447174536 -75 47 55.666197492   9.79 9.36     ApSrEu(Cr) 12 0
97 HD 165474 * 18 05 42.8401334904 +12 00 12.191017896   7.69 7.40     A6VpSrCrEuSi 100 0
98 HD 165475 * 18 05 43.3002443149 +12 00 13.856213404   7.32 7.06 8.00   A3Vp 42 0
99 V* V694 CrA a2* 18 12 25.8347418984 -37 45 09.271268532   8.34 7.92     ApSrCrEu 118 0
100 * phi Dra a2* 18 20 45.43224 +71 20 16.1499   4.15 4.22     B8V 195 0
101 HD 168767 * 18 22 30.3413564928 -26 54 40.347424980   8.88 8.71 9.499   ApEuCr(Sr) 11 0
102 V* V686 CrA a2* 18 56 40.4859327624 -37 20 35.701261512 4.53 5.24 5.38     B3V 207 0
103 * 10 Aql a2* 18 58 46.9240671288 +13 54 23.941711692 6.23 6.14 5.89     A7VpSrEu_Ksn 285 0
104 HD 177268 * 19 05 25.6965714504 -34 16 28.288334820   9.21 9.14     ApCrEu 11 0
105 HD 177765 * 19 07 09.7793979672 -26 19 54.506413128   9.60 9.15     ApSrEuCr 37 0
106 HD 178892 Pu* 19 09 54.7518733248 +14 57 58.348940148   9.27 8.94     ApSrCrEu 52 0
107 HD 179902 * 19 15 08.1441567120 -21 44 15.135815472   10.35 10.07     A0III 10 0
108 * 4 Cyg a2* 19 26 09.1269274848 +36 19 04.432147356 4.60 5.03 5.15     B8pSi(FeII) 142 0
109 HD 184471 SB* 19 33 20.4267326904 +32 34 37.124341284   9.31 9.00     A8SrCrEu 49 0
110 HD 184120 ** 19 33 39.2413 -20 28 51.470   10.44 10.37 10.45   ApEuCr 10 0
111 V* V4373 Sgr a2* 19 39 20.4197579112 -29 44 34.466055252   10.37 9.96     FpSrEu 32 0
112 HD 185204 * 19 40 06.2820810096 -46 54 26.703334188   9.95 9.53     ApSrEuCr 11 0
113 V* V3961 Sgr a2* 19 51 50.6106718344 -39 52 27.738309468 5.05 5.27 5.33     ApCr(Si) 185 0
114 V* V1291 Aql a2* 19 53 18.7357174440 -03 06 52.063556976   5.837 5.619     F0VpSrCrEu 277 0
115 V* V2094 Cyg EB* 19 55 12.0485430576 +46 39 56.023332588   7.96 7.62     A7pCrEu 68 1
116 HD 191654 * 20 10 25.1635874616 +16 01 14.337073056   8.47 8.25     A2VpSr 27 0
117 HD 191695 * 20 12 02.5031386080 -21 18 02.809847052   10.24 9.86     ApSrEu(Cr) 23 0
118 V* V1372 Cyg a2* 20 13 36.3254054976 +53 39 33.549009120   7.334 7.333     A4p 129 0
119 BD+00 4535 * 20 33 26.4270344544 +00 58 53.988578040   10.28 9.92     ~ 9 0
120 HD 196133 SB* 20 33 39.6425794632 +45 10 32.037041496   6.734 6.696     A0V 49 0
121 HD 335238 * 20 50 43.6655493504 +29 48 12.042715104   9.30 9.26     A2 43 0
122 V* V2200 Cyg a2* 21 01 14.3203959696 +43 43 18.402894444   7.60 7.68     B9p 128 0
123 HD 200405 SB* 21 01 38.2998330624 +47 54 47.270657412   8.98 8.90     A0pSrCr 38 0
124 * gam Equ a2* 21 10 20.5000721160 +10 07 53.691967776 5.03 4.94 4.68 4.43 4.32 A9VpSrCrEu 552 0
125 V* BD Ind a2* 21 56 56.6970333720 -61 50 46.320856080   7.42 7.19     ApSrEuCr 63 0
126 V* MM Aqr a2* 22 33 12.3248929848 -20 02 21.880485816   10.058 9.582     A(pEuSrCr) 47 0
127 V* GL Lac a2* 22 44 07.5047456400 +55 35 21.211012248   8.85 8.81     A0p 286 0
128 HD 216018 * 22 49 26.5144571184 -11 20 57.251608404   7.97 7.62     A(3)+F(m) 44 0
129 V* MX Cep a2* 22 52 41.9147401560 +58 48 23.262786000   7.98 7.88     A2p 92 0
130 V* ET And a2* 23 17 56.0115388728 +45 29 20.119357248   6.447 6.479     A0VpSiSr 148 0
131 V* V436 Cas a2* 23 32 47.6484957000 +57 54 20.112470496   7.72 7.55     A0p 115 0

To bookmark this query, right click on this link: simbad:objects in 2017A&A...601A..14M and select 'bookmark this link' or equivalent in the popup menu