SIMBAD references

2016ApJ...827...23D - Astrophys. J., 827, 23-23 (2016/August-2)

High-precision radio and infrared astrometry of LSPM J1314+1320AB. II. Testing pre-main-sequence models at the lithium depletion boundary with dynamical masses.

DUPUY T.J., FORBRICH J., RIZZUTO A., MANN A.W., ALLER K., LIU M.C., KRAUS A.L. and BERGER E.

Abstract (from CDS):

We present novel tests of pre-main-sequence models based on individual dynamical masses for the M7 binary LSPM J1314+1320AB. Joint analysis of Keck adaptive optics astrometric monitoring along with Very Long Baseline Array radio data from a companion paper yield component masses of 92.8±0.6 M_Jup (0.0885±0.0006 M_) and 91.7±1.0 M_Jup (0.0875±0.0010 M_) and a parallactic distance of 17.249±0.013 pc. We find component luminosities consistent with the system being coeval at 80.8±2.5 Myr, according to BHAC15 evolutionary models. The presence of lithium is consistent with model predictions, marking the first test of the theoretical lithium depletion boundary using ultracool dwarfs of known mass. However, we find that the evolutionary model-derived average effective temperature (2950±5 K) is 180 K hotter than that given by a spectral type-{T}_eff relation based on BT-Settl models (2770±100 K). We suggest that the dominant source of this discrepancy is model radii being too small by ≃13%. In a test mimicking the typical application of models by observers, we derive masses on the H-R diagram using luminosity and BT-Settl temperature. The estimated masses are lower by {46}_{-19}^{+16} % (2.0σ) than we measure dynamically and would imply that this is a system of ≃50 M_Jup brown dwarfs, highlighting the large systematic errors possible in H-R diagram properties. This is the first time masses have been measured for ultracool (>=M6) dwarfs displaying spectral signatures of low gravity. Based on features in the infrared, LSPM J1314+1320AB appears to have higher gravity than typical Pleiades and AB Dor members, opposite the expectation given its younger age. The components of LSPM J1314+1320AB are now the nearest, lowest mass pre-main-sequence stars with direct mass measurements.

Abstract Copyright: © 2016. The American Astronomical Society. All rights reserved.

Journal keyword(s): astrometry - binaries: visual - parallaxes - stars: fundamental parameters - stars: individual: LSPM J1314+1320 - stars: pre-main sequence - stars: pre-main sequence

Simbad objects: 16

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2016ApJ...827...23D and select 'bookmark this link' or equivalent in the popup menu