SIMBAD references

2016AJ....152..182H - Astron. J., 152, 182-182 (2016/December-0)

HAT-P-65b and HAT-P-66b: two transiting inflated hot Jupiters and observational evidence for the reinflation of close-in giant planets.

HARTMAN J.D., BAKOS G.A., BHATTI W., PENEV K., BIERYLA A., LATHAM D.W., KOVACS G., TORRES G., CSUBRY Z., DE VAL-BORRO M., BUCHHAVE L., KOVACS T., QUINN S., HOWARD A.W., ISAACSON H., FULTON B.J., EVERETT M.E., ESQUERDO G., BEKY B., SZKLENAR T., FALCO E., SANTERNE A., BOISSE I., HEBRARD G., BURROWS A., LAZAR J., PAPP I. and SARI P.

Abstract (from CDS):

We present the discovery of the transiting exoplanets HAT-P-65b and HAT-P-66b, with orbital periods of 2.6055 and 2.9721 days, masses of 0.527±0.083MJ and 0.783±0.057MJ, and inflated radii of 1.89±0.13RJ and 1.59–0.10+0.16RJ, respectively. They orbit moderately bright (V=13.145±0.029 and V=12.993±0.052) stars of mass 1.212±0.050M and 1.255–0.054+0.107M. The stars are at the main-sequence turnoff. While it is well known that the radii of close-in giant planets are correlated with their equilibrium temperatures, whether or not the radii of planets increase in time as their hosts evolve and become more luminous is an open question. Looking at the broader sample of well-characterized close-in transiting giant planets, we find that there is a statistically significant correlation between planetary radii and the fractional ages of their host stars, with a false-alarm probability of only 0.0041%. We find that the correlation between the radii of planets and the fractional ages of their hosts is fully explained by the known correlation between planetary radii and their present-day equilibrium temperatures; however, if the zero-age main-sequence equilibrium temperature is used in place of the present-day equilibrium temperature, then a correlation with age must also be included to explain the planetary radii. This suggests that, after contracting during the pre-main-sequence, close-in giant planets are reinflated over time due to the increasing level of irradiation received from their host stars. Prior theoretical work indicates that such a dynamic response to irradiation requires a significant fraction of the incident energy to be deposited deep within the planetary interiors.

Abstract Copyright: © 2016. The American Astronomical Society. All rights reserved.

Journal keyword(s): stars: individual: (HAT-P-65, GSC 1111-00383, HAT-P-66, GSC 3814-00307) - techniques: photometric - techniques: spectroscopic - techniques: spectroscopic

VizieR on-line data: <Available at CDS (J/AJ/152/182): stars.dat table2.dat table4.dat table7.dat refs.dat>

Simbad objects: 205

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2016AJ....152..182H and select 'bookmark this link' or equivalent in the popup menu


2023.11.28-11:29:22

© Université de Strasbourg/CNRS

    • Contact