SIMBAD references

2015ApJ...807....2C - Astrophys. J., 807, 2 (2015/July-1)

Indirect detection of forming protoplanets via chemical asymmetries in disks.

CLEEVES L.I., BERGIN E.A. and HARRIES T.J.

Abstract (from CDS):

We examine changes in the molecular abundances resulting from increased heating due to a self-luminous planetary companion embedded within a narrow circumstellar disk gap. Using 3D models that include stellar and planetary irradiation, we find that luminous young planets locally heat up the parent circumstellar disk by many tens of Kelvin, resulting in efficient thermal desorption of molecular species that are otherwise locally frozen out. Furthermore, the heating is deposited over large regions of the disk, ±5 AU radially and spanning azimuthally. From the 3D chemical models, we compute rotational line emission models and full Atacama Large Millimeter Array simulations, and find that the chemical signatures of the young planet are detectable as chemical asymmetries in observations. HCN and its isotopologues are particularly clear tracers of planetary heating for the models considered here, and emission from multiple transitions of the same species is detectable, which encodes temperature information in addition to possible velocity information from the spectra itself. We find submillimeter molecular emission will be a useful tool to study gas giant planet formation in situ, especially beyond AU.

Abstract Copyright:

Journal keyword(s): accretion, accretion disks - astrochemistry - planets and satellites: detection - protoplanetary disks - stars: pre-main sequence

Simbad objects: 3

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2015ApJ...807....2C and select 'bookmark this link' or equivalent in the popup menu