2015A&A...577A..90M


Query : 2015A&A...577A..90M

2015A&A...577A..90M - Astronomy and Astrophysics, volume 577A, 90-90 (2015/5-1)

Comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars.

MAXTED P.F.L., SERENELLI A.M. and SOUTHWORTH J.

Abstract (from CDS):

Tidal interactions between planets and their host stars are not well understood, but may be an important factor in their formation, structure, and evolution. Previous studies suggest that these tidal interactions may be responsible for discrepancies between the ages of exoplanet host stars estimated using stellar models (isochronal age estimates) and age estimates based on the stars' rotation periods (gyrochronological age estimates). Recent improvements in our understanding of the rotational evolution of single stars and a substantial increase in the number of exoplanet host stars with accurate rotation period measurements make it worthwhile to revisit this question. Our aim is to determine whether the gyrochronological age estimates for transiting exoplanet host stars with accurate rotation period measurements are consistent with their isochronal age estimates, and whether this is indicative of tidal interaction between the planets and their host stars. We have compiled a sample of 28 transiting exoplanet host stars with measured rotation periods, including two stars (HAT-P-21 and WASP-5) for which the rotation period based on the light curve modulation is reported here for the first time. We use our recently developed Bayesian Markov chain Monte Carlo method to determine the joint posterior distribution for the mass and age of each star in the sample. We extend our Bayesian method to include a calculation of the posterior distribution of the gyrochronological age estimate that accounts for the uncertainties in the mass and age, the strong correlation between these values, and the uncertainties in the mass-rotation-age calibration. The gyrochronological age estimate (τgyro) is significantly lower than the isochronal age estimate for about half of the stars in our sample. Tidal interactions between the star and planet are a reasonable explanation for this discrepancy in some cases, but not all. The distribution of τ_ gyro_ values is evenly spread from very young ages up to a maximum value of a few Gyr, i.e. there is no obvious pile-up of stars at very low or very high values of τgyro as might be expected if some evolutionary or selection effect were biasing the age distribution of the stars in this sample. There is no clear correlation between τgyro and the strength of the tidal force on the star due to the innermost planet. There is clear evidence that the isochronal age estimates for some K-type stars are too high, and this may also be the case for some G-type stars. This may be the result of magnetic inhibition of convection. The densities of HAT-P-11 and WASP-84 are too high to be reproduced by any stellar models within the observed constraints on effective temperature and metallicity. These stars may have strongly enhanced helium abundances. There is currently no satisfactory explanation for the discrepancy between the young age for CoRoT-2 estimated from either gyrochronology or its high lithium abundance, and the extremely old age for its K-type stellar companion inferred from its very low X-ray flux. There is now strong evidence that the gyrochronological age estimates for some transiting exoplanet host stars are significantly lower than the isochronal age estimates, but it is not always clear that this is good evidence for tidal interactions between the star and the planet.

Abstract Copyright:

Journal keyword(s): stars: solar-type - planet-star interactions

CDS comments: Tables : WASP-89 probably a misprint for WASP-98.

Simbad objects: 31

goto Full paper

goto View the references in ADS

Number of rows : 31
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 * nu. And SB* 00 49 48.8463243776 +41 04 44.079221948 3.80 4.38 4.53 4.56 4.71 B5V 219 0
2 BD-07 436 EB* 02 28 37.226 -07 03 38.39   10.87 10.12 10.23   G9 35 0
3 WASP-50 EB* 02 54 45.1341750384 -10 53 53.025224640   12.43 11.44 11.599   G9V 49 1
4 WASP-98 EB* 03 53 42.9206066712 -34 19 41.585663208     13.0     G7 30 0
5 CoRoT-18 * 06 32 41.3776636176 -00 01 53.725599732   15.8 15.00 14.9 14.05 ~ 47 2
6 CoRoT-7 * 06 43 49.4690164104 -01 03 46.826642700   12.78 11.73 11.36 10.87 K0V 211 1
7 CoRoT-4 * 06 48 46.7134456728 -00 40 21.969631416       13.42   F0V 71 1
8 CoRoT-13 EB* 06 50 53.0726565720 -05 05 11.190799896   15.33 15.039 15.17 14.19 G0V 33 1
9 BD+02 2056 * 08 44 25.7031511896 +01 51 36.105474888   11.64 10.83     K1 32 0
10 * rho01 Cnc EB* 08 52 35.8111044043 +28 19 50.954994470 7.45 6.82   5.4   K0IV-V 1121 1
11 WASP-19 EB* 09 53 40.0765648584 -45 39 33.057187596   13.05 12.31 12.12 11.35 G8V 182 2
12 HAT-P-21 * 11 25 05.9859193536 +41 01 40.664937216   12.56 11.46 11.71   G3 35 1
13 BD+07 2474 EB* 11 43 38.016288 +06 33 49.41900   11.15 10.41 10.34   G5 36 0
14 HATS-2 EB* 11 46 57.3702458424 -22 33 46.817348148   14.53 13.62 13.40   ~ 42 1
15 CD-29 9873 * 12 42 28.4949559632 -30 38 23.529045948   12.36 11.63 11.39 10.78 G8V 64 1
16 * tau Boo Ro* 13 47 15.7381720026 +17 27 24.809555600 5.02 4.98 4.49 4.09 3.85 F7IV-V 988 1
17 Qatar 2 PM* 13 50 37.4100326640 -06 48 14.421574044   14.0   13.45   K5V 67 1
18 CoRoT-6 * 18 44 17.4078666144 +06 39 47.513042100   14.68 13.80 14.18   F5V 49 1
19 Kepler-30 Er* 19 01 08.0746104528 +38 56 50.218268856   16.50   15.767 14.55 ~ 154 1
20 Kepler-63 Er* 19 16 54.2861367672 +49 32 53.451062520   12.449 11.733 11.701   G5 114 1
21 CoRoT-2 * 19 27 06.4944378024 +01 23 01.359897468   13.422 12.568 12.204 11.49 G7V+K9V 249 2
22 NGC 6811 OpC 19 37 21.6 +46 22 41   7.47 6.8     ~ 378 0
23 BD+47 2936 EB* 19 50 50.2472976936 +48 04 51.101390496       8.8   K4V 300 2
24 Kepler-17 Ro* 19 53 34.8643397568 +47 48 54.049530564   14.6   13.6   G5V 151 1
25 HD 189733 BY* 20 00 43.7129433648 +22 42 39.073143456 9.241 8.578 7.648 7.126 6.68 K2V 896 1
26 BD-05 5432 PM* 21 00 06.1968214728 -05 05 40.034944176   10.93 9.87     ~ 68 1
27 WASP-46 EB* 21 14 56.8598669520 -55 52 18.458085144   13.0   13.06 12.29 G6 44 1
28 HD 209458 V* 22 03 10.7727465312 +18 53 03.549393384   8.21 7.63     F9V 1115 1
29 WASP-10 V* 23 15 58.3006181424 +31 27 46.296056268   12.4   12.03   K5V 90 1
30 WASP-4 EB* 23 34 15.0857248317 -42 03 41.047972591   13.51 12.48 11.9   G7V 176 1
31 WASP-5 EB* 23 57 23.7564672192 -41 16 37.743700800   12.808 12.146 12.058 11.44 G4V 120 1

To bookmark this query, right click on this link: simbad:objects in 2015A&A...577A..90M and select 'bookmark this link' or equivalent in the popup menu