2015A&A...576A.109Y


Query : 2015A&A...576A.109Y

2015A&A...576A.109Y - Astronomy and Astrophysics, volume 576A, 109-109 (2015/4-1)

APEX-CHAMP+ high-J CO observations of low-mass young stellar objects. IV. Mechanical and radiative feedback.

YILDIZ U.A., KRISTENSEN L.E., VAN DISHOECK E.F., HOGERHEIJDE M.R., KARSKA A., BELLOCHE A., ENDO A., FRIESWIJK W., GUESTEN R., VAN KEMPEN T.A., LEURINI S., NAGY Z., PEREZ-BEAUPUITS J.P., RISACHER C., VAN DER MAREL N., VAN WEEREN R.J. and WYROWSKI F.

Abstract (from CDS):

During the embedded stage of star formation, bipolar molecular outflows and UV radiation from the protostar are important feedback processes. Both processes reflect the accretion onto the forming star and affect subsequent collapse or fragmentation of the cloud. Our aim is to quantify the feedback, mechanical and radiative, for a large sample of low-mass sources in a consistent manner. The outflow activity is compared to radiative feedback in the form of UV heating by the accreting protostar to search for correlations and evolutionary trends. Large-scale maps of 26 young stellar objects, which are part of the Herschel WISH key program are obtained using the CHAMP+ instrument on the Atacama Pathfinder EXperiment ( 12CO and 13CO and 6-5; Eup∼100K), and the HARP-B instrument on the James Clerk Maxwell Telescope ( 12CO and 13CO and 3-2; Eup∼30K). The maps have high spatial resolution, particularly the CO 6-5 maps taken with a 9'' beam, resolving the morphology of the outflows. The maps are used to determine outflow parameters and the results are compared with higher-J CO lines obtained with Herschel. Envelope models are used to quantify the amount of UV-heated gas and its temperature from 6-5 observations. All sources in our sample show outflow activity, with the spatial extent decreasing from the Class 0 to the Class I stage. Consistent with previous studies, the outflow force, FCO, is larger for Class 0 sources than for Class I sources, even if their luminosities are comparable. The outflowing gas typically extends to much greater distances than the power-law envelope and therefore influences the surrounding cloud material directly. Comparison of the CO 6-5 results with HIFI and PACS high-J CO lines, both tracing currently shocked gas, shows that the two components are linked, even though the transitions do not probe the same gas. The link does not extend down to CO 3-2. The conclusion is that CO 6-5 depends on the shock characteristics (density and velocity), whereas CO 3-2 is more sensitive to conditions in the surrounding environment (density). The radiative feedback is responsible for increasing the gas temperature by a factor of two, up to 30-50 K, on scales of a few thousand AU, particularly along the direction of the outflow. The mass of the UV heated gas exceeds the mass contained in the entrained outflow in the inner ∼3000AU and is therefore at least as important on small scales.

Abstract Copyright:

Journal keyword(s): astrochemistry - stars: formation - stars: protostars - ISM: molecules - techniques: spectroscopic

VizieR on-line data: <Available at CDS (J/A+A/576/A109): list.dat fits/* gildas/*>

Simbad objects: 40

goto Full paper

goto View the references in ADS

Number of rows : 40
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 Bol 335 GlC 00 40 41.685 +40 38 28.16 19.615 19.011 17.824 17.001 16.158 ~ 40 0
2 LDN 1448 DNe 03 22.5 +30 35           ~ 515 0
3 IRAS F03226+3033 Y*O 03 25 38.83 +30 44 06.2           ~ 335 0
4 [JCC87] IRAS 2A Y*O 03 28 55.55 +31 14 36.7           ~ 459 3
5 [JCC87] IRAS 4A Y*O 03 29 10.49 +31 13 30.8           ~ 715 1
6 [JCC87] IRAS 4 FIR 03 29 10.9 +31 13 26           ~ 478 0
7 NGC 1333 OpC 03 29 11.3 +31 18 36           ~ 1450 1
8 [JCC87] IRAS 4B Y*O 03 29 12.058 +31 13 02.05           ~ 600 0
9 LDN 1489 DNe 04 04 47.5 +26 19 42           ~ 228 0
10 LDN 1551 DNe 04 31 30.0 +18 12 30           ~ 805 1
11 RAFGL 5123 Y*O 04 31 34.07736 +18 08 04.9020           K3V/M3III 861 0
12 IRAS 04361+2547 Y*O 04 39 13.89288 +25 53 20.8788           ~ 196 1
13 IRAS 04365+2535 Y*O 04 39 35.19360 +25 41 44.7252           ~ 290 0
14 LDN 1527 DNe 04 39 53 +25 45.0           ~ 634 0
15 NAME Taurus Complex SFR 04 41.0 +25 52           ~ 4414 0
16 TMC-1 MoC 04 41 45.9 +25 41 27           ~ 1674 0
17 2MASS J08254384-5100326 Y*O 08 25 43.85 -51 00 32.7           ~ 316 1
18 IRAS 11051-7706 Y*O 11 06 46.025 -77 22 29.67           ~ 87 0
19 NAME Chamaeleon Region SFR 11 55 -78.0           ~ 806 0
20 [B2001b] IRS 1 Y*O 12 01 36.53040 -65 08 51.9180           ~ 153 0
21 BHR 71 MoC 12 01 37 -65 08.8           ~ 154 0
22 V* DK Cha TT* 12 53 17.2111480272 -77 07 10.736046012           F0e 142 0
23 IRAS 15398-3359 Y*? 15 43 02.21016 -34 09 07.7112       18.38 21.72 ~ 174 0
24 GSS 30 Y*O 16 26 21.38160 -24 23 04.0524           ~ 210 1
25 [GY92] 63 * 16 26 32.9 -24 45 34           ~ 4 0
26 Elia 2-29 Y*O 16 27 09.43032 -24 37 18.7716           ~ 283 1
27 NAME Ophiuchus Molecular Cloud SFR 16 28 06 -24 32.5           ~ 3628 1
28 IRAS 16285-2355 Y*O 16 31 35.65752 -24 01 29.4708           ~ 138 0
29 HBC 650 TT* 16 34 29.32 -15 47 01.4           K3.0 177 2
30 IRAS 18148-0440 Y*O 18 17 29.94 -04 39 39.3           ~ 92 0
31 LDN 483 DNe 18 17 35 -04 39.8           ~ 315 0
32 NAME Serpens Cloud SFR 18 29 49 +01 14.8           ~ 1100 2
33 GCNM 23 Y*O 18 29 49.63 +01 15 21.9           ~ 273 2
34 NAME Serpens SMM 4 cor 18 29 57.1 +01 13 15           ~ 137 0
35 NAME SERPENS SMM 3 Y*O 18 29 59.28 +01 14 01.7           ~ 101 1
36 NAME LDN 723-mm smm 19 17 53.70 +19 12 20.0           ~ 19 0
37 LDN 723 DNe 19 18 12 +19 13.6           ~ 155 0
38 LDN 663 DNe 19 36 55 +07 34.4           ~ 644 0
39 IRAS 19345+0727 cor 19 37 00.7 +07 34 08           ~ 89 0
40 LDN 1157 DNe 20 39 06.4 +68 02 13           ~ 572 0

To bookmark this query, right click on this link: simbad:objects in 2015A&A...576A.109Y and select 'bookmark this link' or equivalent in the popup menu