SIMBAD references

2014A&A...563A..40C - Astronomy and Astrophysics, volume 563A, 40-40 (2014/3-1)

Broad-band transmission spectrum and K-band thermal emission of WASP-43b as observed from the ground.

CHEN G., VAN BOEKEL R., WANG H., NIKOLOV N., FORTNEY J.J., SEEMANN U., WANG W., MANCINI L. and HENNING T.

Abstract (from CDS):

WASP-43b is the closest-orbiting hot Jupiter, and it has high bulk density. It causes deep eclipse depths in the system's light curve in both transit and occultation that is attributed to the cool temperature and small radius of its host star. We aim to secure a broad-band transmission spectrum and to detect its near-infrared thermal emission in order to characterize its atmosphere. We observed one transit and one occultation event simultaneously in the g', r', i', z', J, H, K bands using the GROND instrument on the MPG/ESO 2.2-m telescope, where the telescope was heavily defocused in staring mode. After modeling the light curves, we derived wavelength-dependent transit depths and flux ratios and compared them to atmospheric models. From the transit event, we have independently derived WASP-43's system parameters with high precision and improved the period to be 0.81347437(13)days based on all the available timings. No significant variation in transit depths is detected, with the largest deviations coming from the i'-, H-, and K-bands. Given the observational uncertainties, the broad-band transmission spectrum can be explained by either (i) a flat featureless straight line that indicates thick clouds; (ii) synthetic spectra with absorption signatures of atomic Na/K, or molecular TiO/VO that in turn indicate cloud-free atmosphere; or (iii) a Rayleigh scattering profile that indicates high-altitude hazes. From the occultation event, we detected planetary dayside thermal emission in the K-band with a flux ratio of 0.197±0.042%, which confirms previous detections obtained in the 2.09µm narrow band and KS-band. The K-band brightness temperature 1878+108–116K favors an atmosphere with poor day- to nightside heat redistribution. We also have a marginal detection in the i'-band (0.037+0.023–0.021%), corresponding to TB=2225+139–225K, which is either a false positive, a signature of non-blackbody radiation at this wavelength, or an indication of reflective hazes at high altitude.

Abstract Copyright:

Journal keyword(s): planetary systems - stars: individual: WASP-43 - planets and satellites: atmospheres - techniques: photometric - planets and satellites: fundamental parameters

VizieR on-line data: <Available at CDS (J/A+A/563/A40): tran_g.dat tran_r.dat tran_i.dat tran_z.dat tran_j.dat tran_h.dat tran_k.dat occ_i.dat occ_k.dat>

Simbad objects: 7

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2014A&A...563A..40C and select 'bookmark this link' or equivalent in the popup menu