SIMBAD references

2013MNRAS.434.2465C - Mon. Not. R. Astron. Soc., 434, 2465-2479 (2013/September-3)

Light curves of stars and exoplanets: estimating inclination, obliquity and albedo.

COWAN N.B., FUENTES P.A. and HAGGARD H.M.

Abstract (from CDS):

Distant stars and planets will remain spatially unresolved for the foreseeable future. It is nonetheless possible to infer aspects of their brightness markings and viewing geometries by analysing disc-integrated rotational and orbital brightness variations. We compute the harmonic light curves, F_l^m(t), resulting from spherical harmonic maps of intensity or albedo, Y_l^m(θ,φ), where l and m are the total and longitudinal orders. It has long been known that many non-zero maps have no light curve signature, e.g. odd l > 1 belong to the nullspace of harmonic thermal light curves. We show that the remaining harmonic light curves exhibit a predictable inclination dependence. Notably, odd m > 1 are present in an inclined light curve, but not seen by an equatorial observer. We therefore suggest that the Fourier spectrum of a thermal light curve may be sufficient to determine the orbital inclination of non-transiting short-period planets, the rotational inclination of stars and brown dwarfs, and the obliquity of directly imaged planets. In the best-case scenario of a nearly edge-on geometry, measuring the m = 3 mode of a star's rotational light curve to within a factor of 2 provides an inclination estimate good to ±6°, assuming that stars have randomly distributed spots. Alternatively, if stars have brightness maps perfectly symmetric about the equator, their light curves will have no m = 3 power, regardless of orientation. In general, inclination estimates will remain qualitative until detailed hydrodynamic simulations and/or occultation maps can be used as a calibrator. We further derive harmonic reflected light curves for tidally locked planets; these are higher-order versions of the well-known Lambert phase curve. We show that a non-uniform planet may have an apparent albedo 25 per cent lower than its intrinsic albedo, even if it exhibits precisely Lambertian phase variations. Finally, we provide low-order analytic expressions for harmonic light curves that can be used for fitting observed photometry; as a general rule, edge-on solutions cannot simply be scaled by sini to mimic inclined light curves.

Abstract Copyright: © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society (2013)

Journal keyword(s): techniques: photometric - planets and satellites: atmospheres - planets and satellites: surfaces - starspots

Simbad objects: 1

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2013MNRAS.434.2465C and select 'bookmark this link' or equivalent in the popup menu