SIMBAD references

2013ApJ...772...59M - Astrophys. J., 772, 59 (2013/July-3)

Reproducing the observed abundances in RCB and HdC stars with post-double-degenerate merger models–Constraints on merger and post-merger simulations and physics processes.

MENON A., HERWIG F., DENISSENKOV P.A., CLAYTON G.C., STAFF J., PIGNATARI M. and PAXTON B.

Abstract (from CDS):

The R Coronae Borealis (RCB) stars are hydrogen-deficient, variable stars that are most likely the result of He-CO WD mergers. They display extremely low oxygen isotopic ratios, 16O/18O ≃ 1-10, 12C/13C ≥ 100, and enhancements up to 2.6 dex in F and in s-process elements from Zn to La, compared to solar. These abundances provide stringent constraints on the physical processes during and after the double-degenerate merger. As shown previously, O-isotopic ratios observed in RCB stars cannot result from the dynamic double-degenerate merger phase, and we now investigate the role of the long-term one-dimensional spherical post-merger evolution and nucleosynthesis based on realistic hydrodynamic merger progenitor models. We adopt a model for extra envelope mixing to represent processes driven by rotation originating in the dynamical merger. Comprehensive nucleosynthesis post-processing simulations for these stellar evolution models reproduce, for the first time, the full range of the observed abundances for almost all the elements measured in RCB stars: 16O/18O ratios between 9 and 15, C-isotopic ratios above 100, and ∼1.4-2.35 dex F enhancements, along with enrichments in s-process elements. The nucleosynthesis processes in our models constrain the length and temperature in the dynamic merger shell-of-fire feature as well as the envelope mixing in the post-merger phase. s-process elements originate either in the shell-of-fire merger feature or during the post-merger evolution, but the contribution from the asymptotic giant branch progenitors is negligible. The post-merger envelope mixing must eventually cease ∼106 yr after the dynamic merger phase before the star enters the RCB phase.

Abstract Copyright:

Journal keyword(s): hydrodynamics - methods: numerical - nuclear reactions, nucleosynthesis, abundances - stars: abundances - stars: AGB and post-AGB - stars: evolution

Simbad objects: 4

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2013ApJ...772...59M and select 'bookmark this link' or equivalent in the popup menu