2013A&A...559A..59B -
Astronomy and Astrophysics, volume 559A, 59-59 (2013/11-1)
Chemical gradients in the Milky Way from the RAVE data. I. Dwarf stars.
BOECHE C., SIEBERT A., PIFFL T., JUST A., STEINMETZ M., SHARMA S., KORDOPATIS G., GILMORE G., CHIAPPINI C., WILLIAMS M., GREBEL E.K., BLAND-HAWTHORN J., GIBSON B.K., MUNARI U., SIVIERO A., BIENAYME O., NAVARRO J.F., PARKER Q.A., REID W., SEABROKE G.M., WATSON F.G., WYSE R.F.G. and ZWITTER T.
Abstract (from CDS):
We aim at measuring the chemical gradients of the elements Mg, Al, Si, and Fe along the Galactic radius to provide new constraints on the chemical evolution models of the Galaxy and Galaxy models such as the Besancon model. Thanks to the large number of stars of our RAVE sample we can study how the gradients vary as function of the distance from the Galactic plane. We analysed three different samples selected from three independent datasets: a sample of 19962 dwarf stars selected from the RAVE database, a sample of 10616 dwarf stars selected from the Geneva-Copenhagen Survey (GCS) dataset, and a mock sample (equivalent to the RAVE sample) created by using the GALAXIA code, which is based on the Besancon model. The three samples were analysed by using the very same method for comparison purposes. We integrated the Galactic orbits and obtained the guiding radii (Rg) and the maximum distances from the Galactic plane reached by the stars along their orbits (Zmax). We measured the chemical gradients as functions of Rg at different Zmax. We found that the chemical gradients of the RAVE and GCS samples are negative and show consistent trends, although they are not equal: at Zmax<0.4kpc and 4.5<Rg(kpc)<9.5, the iron gradient for the RAVE sample is d[Fe/H]/dRg=-0.065dex/kpc, whereas for the GCS sample it is d[Fe/H]/dRg=-0.043dex/kpc with internal errors of ±0.002 and ±0.004dex/kpc, respectively. The gradients of the RAVE and GCS samples become flatter at larger Zmax. Conversely, the mock sample has a positive iron gradient of d[Fe/H]/dRg=+0.053±0.003dex/kpc at Zmax<0.4kpc and remains positive at any Zmax. These positive and unrealistic values originate from the lack of correlation between metallicity and tangential velocity in the Besancon model. In addition, the low metallicity and asymmetric drift of the thick disc causes a shift of the stars towards lower Rg and metallicity which, together with the thin-disc stars with a higher metallicity and Rg, generates a fictitious positive gradient of the full sample. The flatter gradient at larger Zmax found in the RAVE and the GCS samples may therefore be due to the superposition of thin- and thick-disc stars, which mimicks a flatter or positive gradient. This does not exclude the possibility that the thick disc has no chemical gradient. The discrepancies between the observational samples and the mock sample can be reduced by i) decreasing the density; ii) decreasing the vertical velocity; and iii) increasing the metallicity of the thick disc in the Besancon model.
(Ref) Object type as listed in the reference "Ref"
(acronym) Object type linked to the acronym according to the original reference
() Anterior to 2007, before we can link the objet type to a reference, or given by the CDS team in some particular cases
Other object types:
reg
(),
gam
(HESS,TeV,...)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
FK4
coord.
(ep=B1950 eq=1950) :
17 42 28.87566 -28 59 12.3570
[
]
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
Gal
coord.
(ep=J2000) :
359.94487501 -00.04391769
[
]
', {sourceSize:12, color:'#30a090'})); aladin.on('objectClicked', function(object) { var objName=object.data.MAIN_ID; aladin.showPopup(object.ra,object.dec,'',''+ objName+''); });" title="Show Simbad objects">
Overlay
points in this preview
All
(CDSPortal)
Send to
Hierarchy :
number of linked objects
whatever the membership probability is
(see description
here
)
:
The link on the acronym of the identifiers give access to the
information for this acronym in the dictionary of nomenclature.
Identifiers (8) :
An access of full data is available using the icon Vizier near the identifier of the catalogue
References (13538 between 1850 and 2023) (Total 13538)
Simbad bibliographic survey began in 1850 for stars (at least bright stars) and in 1983 for all other objects (outside the solar system).
Follow
new references on this object
Annotations :
Annotations allow a user to add a note or report an error concerning the astronomical object and its data. It requires registration to post a note. See description . Please, have a look at Best practices. The list of all annotations to SIMBAD objects can be found here .
To bookmark this query, right click on this link: simbad:objects in 2013A&A...559A..59B and select 'bookmark this link' or equivalent in the popup menu