2012A&A...540A..64V


Query : 2012A&A...540A..64V

2012A&A...540A..64V - Astronomy and Astrophysics, volume 540A, 64-64 (2012/4-1)

Absolute dimensions of solar-type eclipsing binaries. EF Aquarii: a G0 test for stellar evolution models.

VOS J., CLAUSEN J.V., JORGENSEN U.G., OSTENSEN R.H., CLARET A., HILLEN M. and EXTER K.

Abstract (from CDS):

Recent studies have shown that stellar chromospheric activity, and its effect on convective energy transport in the envelope, is most likely the cause of significant radius and temperature discrepancies between theoretical evolution models and observations. Accurate mass, radius, and abundance determinations from solar-type binaries exhibiting various levels of activity are needed for a better insight into the structure and evolution of these stars. We aim to determine absolute dimensions and abundances for the solar-type detached eclipsing binary EF Aqr, and to perform a detailed comparison with results from recent stellar evolutionary models. uvby light curves and uvbyβ standard photometry were obtained with the Stroemgren Automatic Telescope. The broadening function formalism was applied on spectra observed with HERMES at the Mercator telescope in La Palma, to obtain radial velocity curves. State-of-the-art methods were applied for the photometric and spectroscopic analyses. Masses and radii with a precision of 0.6% and 1.0% respectively have been established for both components of EF Aqr. The active 0.956M secondary shows star spots and strong Ca II H and K emission lines. The 1.224M primary shows signs of activity as well, but at a lower level. An [Fe/H] abundance of 0.00±0.10 is derived with similar abundances for Si, Ca, Sc, Ti, V, Cr, Co, and Ni. Solar calibrated evolutionary models such as Yonsei-Yale, Victoria-Regina and BaSTI isochrones and evolutionary tracks are unable to reproduce EF Aqr, especially for the secondary, which is 9% larger and 400K cooler than predicted. Models adopting significantly lower mixing length parameters l/Hp remove these discrepancies, as seen in other solar type binaries. For the observed metallicity, Granada models with a mixing length of l/Hp=1.30 (primary) and 1.05 (secondary) reproduce both components at a common age of 1.5±0.6Gyr. Observations of EF Aqr suggests that magnetic activity, and its effect on envelope convection, is likely to be the cause of discrepancies in both radius and temperature, which can be removed by adjusting the mixing length parameter of the models downwards.

Abstract Copyright:

Journal keyword(s): stars: evolution - stars: fundamental parameters - stars: abundances - stars: activity - binaries: eclipsing

VizieR on-line data: <Available at CDS (J/A+A/540/A64): phot.dat>

Simbad objects: 6

goto Full paper

goto View the references in ADS

Number of rows : 6
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 V* EW Ori SB* 05 20 09.1431629664 +02 02 40.004288664   10.47 9.78     F8 95 0
2 V* IM Vir EB* 12 49 38.6982565560 -06 04 44.864911128   10.34 9.69   8.834 G5/6V 73 0
3 HD 217376 * 23 00 19.9516330896 -08 52 49.938882384   7.22 6.81     F3IV 28 0
4 V* EF Aqr EB* 23 01 19.0925274336 -06 26 15.356891616   10.48 10.04   9.247 G1V 39 0
5 HD 217877 PM* 23 03 57.2733595505 -04 47 41.501076410   7.26 6.68     G0-V 131 0
6 HD 218730 PM* 23 10 24.7157533056 -07 48 43.182575280   7.93 7.32     G0V 55 0

To bookmark this query, right click on this link: simbad:objects in 2012A&A...540A..64V and select 'bookmark this link' or equivalent in the popup menu


2023.11.28-15:20:17

© Université de Strasbourg/CNRS

    • Contact