SIMBAD references

2011ApJ...740...43S - Astrophys. J., 740, 43 (2011/October-2)

Dust grain evolution in spatially resolved T Tauri binaries.

SKEMER A.J., CLOSE L.M., GREENE T.P., HINZ P.M., HOFFMANN W.F. and MALES J.R.

Abstract (from CDS):

Core-accretion planet formation begins in protoplanetary disks with the growth of small, interstellar medium dust grains into larger particles. The progress of grain growth, which can be quantified using 10 µm silicate spectroscopy, has broad implications for the final products of planet formation. Previous studies have attempted to correlate stellar and disk properties with the 10 µm silicate feature in an effort to determine which stars are efficient at grain growth. Thus far there does not appear to be a dominant correlated parameter. In this paper, we use spatially resolved adaptive optics spectroscopy of nine T Tauri binaries as tight as 0".25 to determine if basic properties shared between binary stars, such as age, composition, and formation history, have an effect on dust grain evolution. We find with 90%-95% confidence that the silicate feature equivalent widths of binaries are more similar than those of randomly paired single stars, implying that shared properties do play an important role in dust grain evolution. At lower statistical significance, we find with 82% confidence that the secondary has a more prominent silicate emission feature (i.e., smaller grains) than the primary. If confirmed by larger surveys, this would imply that spectral type and/or binarity are important factors in dust grain evolution.

Abstract Copyright:

Journal keyword(s): binaries: general - instrumentation: adaptive optics - planets and satellites: formation - protoplanetary disks - stars: variables: T Tauri, Herbig Ae/Be

Simbad objects: 53

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2011ApJ...740...43S and select 'bookmark this link' or equivalent in the popup menu