SIMBAD references

2011ApJ...726..108T - Astrophys. J., 726, 108 (2011/January-2)

From galaxy clusters to ultra-faint dwarf spheroidals: a fundamental curve connecting dispersion-supported galaxies to their dark matter halos.

TOLLERUD E.J., BULLOCK J.S., GRAVES G.J. and WOLF J.

Abstract (from CDS):

We examine scaling relations of dispersion-supported galaxies over more than eight orders of magnitude in luminosity by transforming standard fundamental plane parameters into a space of mass, radius, and luminosity. The radius variable r1/2 is the deprojected (three-dimensional) half-light radius, the mass variable M1/2 is the total gravitating mass within this radius, and L1/2 is half the luminosity. We find that from ultra-faint dwarf spheroidals to giant cluster spheroids, dispersion-supported galaxies scatter about a one-dimensional "fundamental curve" through this MRL space. The mass-radius-luminosity relation transitions from M1/2∼ r 1.441/2∼ L 0.301/2 for the faintest dwarf spheroidal galaxies to M1/2∼ r 1.421/2∼ L 3.2 1/2 for the most luminous galaxy cluster spheroids. The weakness of the M1/2- L1/2 slope on the faint end may imply that potential well depth limits galaxy formation in small galaxies, while the stronger dependence on L1/2 on the bright end suggests that baryonic physics limits galaxy formation in massive galaxies. The mass-radius projection of this curve can be compared to median dark matter halo mass profiles of ΛCDM halos in order to construct a virial mass-luminosity relationship (Mvir-L) for galaxies that spans seven orders of magnitude in Mvir. Independent of any global abundance or clustering information, we find that (spheroidal) galaxy formation needs to be most efficient in halos of Mvir∼ 1012 M and to become inefficient above and below this scale. Moreover, this profile matching technique for deriving the Mvir-L is most accurate at the high- and low-luminosity extremes (where dark matter fractions are highest) and is therefore quite complementary to statistical approaches that rely on having a well-sampled luminosity function. We also consider the significance and utility of the scatter about this relation, and find that in the dSph regime observational errors are almost at the point where we can explore the intrinsic scatter in the luminosity-virial mass relation. Finally, we note that purely stellar systems such as globular clusters and ultra-compact dwarfs do not follow the fundamental curve relation. This allows them to be easily distinguished from dark-matter-dominated dSph galaxies in MRL space.

Abstract Copyright:

Journal keyword(s): dark matter - galaxies: clusters: general - galaxies: dwarf - galaxies: elliptical and lenticular, cD - galaxies: fundamental parameters - Local Group

VizieR on-line data: <Available at CDS (J/ApJ/726/108): table1.dat>

Simbad objects: 171

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2011ApJ...726..108T and select 'bookmark this link' or equivalent in the popup menu