SIMBAD references

2010A&A...520A..79M - Astronomy and Astrophysics, volume 520, A79-79 (2010/9-2)

Chromospheric activity and rotation of FGK stars in the solar vicinity . An estimation of the radial velocity jitter.


Abstract (from CDS):

Chromospheric activity produces both photometric and spectroscopic variations that can be mistaken as planets. Large spots crossing the stellar disc can produce planet-like periodic variations in the light curve of a star. These spots clearly affect the spectral line profiles, and their perturbations alter the line centroids creating a radial velocity jitter that might ``contaminate'' the variations induced by a planet. Precise chromospheric activity measurements are needed to estimate the activity-induced noise that should be expected for a given star. We obtain precise chromospheric activity measurements and projected rotational velocities for nearby (d≤25pc) cool (spectral types F to K) stars, to estimate their expected activity-related jitter. As a complementary objective, we attempt to obtain relationships between fluxes in different activity indicator lines, that permit a transformation of traditional activity indicators, i.e., CaII H & K lines, to others that hold noteworthy advantages. We used high resolution (∼50000) echelle optical spectra. Standard data reduction was performed using the IRAF echelle package. To determine the chromospheric emission of the stars in the sample, we used the spectral subtraction technique. We measured the equivalent widths of the chromospheric emission lines in the subtracted spectrum and transformed them into fluxes by applying empirical equivalent width and flux relationships. Rotational velocities were determined using the cross-correlation technique. To infer activity-related radial velocity (RV) jitter, we used empirical relationships between this jitter and the R'HK index. We measured chromospheric activity, as given by different indicators throughout the optical spectra, and projected rotational velocities for 371 nearby cool stars. We have built empirical relationships among the most important chromospheric emission lines. Finally, we used the measured chromospheric activity to estimate the expected RV jitter for the active stars in the sample.

Abstract Copyright:

Journal keyword(s): solar neighbourhood - stars: late-type - stars: activity - stars: chromospheres - stars: rotation - planetary systems

VizieR on-line data: <Available at CDS (J/A+A/520/A79): tablea1.dat tablea2.dat tablea3.dat tablea4.dat>

Simbad objects: 402

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2010A&A...520A..79M and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact