2010A&A...516A..88O


Query : 2010A&A...516A..88O

2010A&A...516A..88O - Astronomy and Astrophysics, volume 516, A88-88 (2010/6-3)

Quark-nova remnants. IV. Application to radio emitting anomalous X-ray pulsars transients.

OUYED R., LEAHY D. and NIEBERGAL B.

Abstract (from CDS):

XTE J1810-197 and 1E 1547.0-5408 are two transient anomalous X-rays pulsars (AXPs) exhibiting radio emission with unusual properties. In addition, their spin down rates during outburst show opposite trends, which so far has no explanation. Here, we extend our quark-nova model for AXPs to include transient AXPs, in which the outbursts are caused by transient accretion events from a Keplerian (iron-rich) degenerate ring. For a ring with inner and outer radii of 23.5km and 26.5km, respectively, our model gives a good fit to the observed X-ray outburst from XTE J1810-197 and the behavior of temperature, luminosity, and area of the two X-ray blackbodies with time. The two blackbodies in our model are related to a heat front (i.e. Bohm diffusion front) propagating along the ring's surface and an accretion hot spot on the quark star surface. Radio pulsations in our model are caused by dissipation at the light cylinder of magnetic bubbles, produced near the ring during the X-ray outburst. The delay between X-ray peak emission and radio emission in our model is related to the propagation time of these bubbles to the light cylinder and scale with the period as tprop.∝(P7/2–α/2)/{dot}(P)1/2 where α defines the radial dependence of matter density in the magnetosphere (∝r–α); for an equatorial wind, α=1, we predict a ∼1 year and ∼1 month delay for XTE J1810-197 and 1E1547.0-5408, respectively. The observed flat spectrum, erratic pulse profile, and the pulse duration are all explained in our model as a result of X-point reconnection events induced by the dissipation of the bubbles at the light cylinder. The spin down rate of the central quark star can either increase or decrease depending on how the radial drift velocity of the magnetic islands changes with distance from the central star. We suggest an evolutionary connection between transient AXPs and typical AXPs in our model.

Abstract Copyright:

Journal keyword(s): stars: evolution - accretion, accretion disks - magnetic fields - pulsars: general

Simbad objects: 4

goto Full paper

goto View the references in ADS

Number of rows : 4
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 PSR J0146+6145 Psr 01 46 22.21 +61 45 03.8   28.100 25.620     ~ 570 0
2 PSR J1550-5418 Psr 15 50 54.18 -54 18 23.9           ~ 409 1
3 AX J1809.8-1943 Psr 18 09 51.07 -19 43 51.8           ~ 463 0
4 2E 4673 HXB 23 01 08.14 +58 52 44.5           ~ 633 1

To bookmark this query, right click on this link: simbad:objects in 2010A&A...516A..88O and select 'bookmark this link' or equivalent in the popup menu