SIMBAD references

2009ApJ...701L..20Z - Astrophys. J., 701, L20-L24 (2009/August-2)

Atmospheric sulfur photochemistry on hot jupiters.

ZAHNLE K., MARLEY M.S., FREEDMAN R.S., LODDERS K. and FORTNEY J.J.

Abstract (from CDS):

We develop a new one-dimensional photochemical kinetics code to address stratospheric chemistry and stratospheric heating in hot Jupiters. Here we address optically active S-containing species and CO2 at 1200 ≤ T ≤ 2000 K. HS (mercapto) and S2 are highly reactive species that are generated photochemically and thermochemically from H2 S with peak abundances between 1 and 10 mbar. S2 absorbs UV between 240 and 340 nm and is optically thick for metallicities [S/H]>0 at T ≥ 1200 K. HS is probably more important than S2, as it is generally more abundant than S2 under hot Jupiter conditions and it absorbs at somewhat redder wavelengths. We use molecular theory to compute an HS absorption spectrum from sparse available data and find that HS should absorb strongly between 300 and 460 nm, with absorption at the longer wavelengths being temperature sensitive. When the two absorbers are combined, radiative heating (per kg of gas) peaks at 100 µbars, with a total stratospheric heating of ∼8x104 W/m2 for a jovian planet orbiting a solar-twin at 0.032 AU. Total heating is insensitive to metallicity. The CO2 mixing ratio is a well behaved quadratic function of metallicity, ranging from 1.6x10–8 to 1.6x10–4 for -0.3 < [M/H] < 1.7. CO2 is insensitive to insolation, vertical mixing, temperature (1200 < T < 2000), and gravity. The photochemical calculations confirm that CO2 should prove a useful probe of planetary metallicity.

Abstract Copyright:

Journal keyword(s): planetary systems - stars: individual (HD 209458, HD 149026)

Simbad objects: 10

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2009ApJ...701L..20Z and select 'bookmark this link' or equivalent in the popup menu