SIMBAD references

2007MNRAS.379..755S - Mon. Not. R. Astron. Soc., 379, 755-772 (2007/August-1)

The RAVE survey: constraining the local Galactic escape speed.

SMITH M.C., RUCHTI G.R., HELMI A., WYSE R.F.G., FULBRIGHT J.P., FREEMAN K.C., NAVARRO J.F., SEABROKE G.M., STEINMETZ M., WILLIAMS M., BIENAYME O., BINNEY J., BLAND-HAWTHORN J., DEHNEN W., GIBSON B.K., GILMORE G., GREBEL E.K., MUNARI U., PARKER Q.A., SCHOLZ R.-D., SIEBERT A., WATSON F.G. and ZWITTER T.

Abstract (from CDS):

We report new constraints on the local escape speed of our Galaxy. Our analysis is based on a sample of high-velocity stars from the RAVE survey and two previously published data sets. We use cosmological simulations of disc galaxy formation to motivate our assumptions on the shape of the velocity distribution, allowing for a significantly more precise measurement of the escape velocity compared to previous studies. We find that the escape velocity lies within the range 498 < vesc< 608km/s (90 per cent confidence), with a median likelihood of 544km/s. The fact that v2escis significantly greater than 2v2circ(where vcirc= 220km/s is the local circular velocity) implies that there must be a significant amount of mass exterior to the solar circle, that is, this convincingly demonstrates the presence of a dark halo in the Galaxy. We use our constraints on vesc to determine the mass of the Milky Way halo for three halo profiles. For example, an adiabatically contracted NFW halo model results in a virial mass of 1.42+1.14–0.54x1012Mand virial radius of (90 per cent confidence). For this model the circular velocity at the virial radius is 142+31–21km/s. Although our halo masses are model dependent, we find that they are in good agreement with each other.

Abstract Copyright: 2007 The Authors. Journal compilation © 2007 RAS

Journal keyword(s): Galaxy: fundamental parameters - Galaxy: kinematics and dynamics

Simbad objects: 24

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2007MNRAS.379..755S and select 'bookmark this link' or equivalent in the popup menu


2022.10.03-20:08:49

© Université de Strasbourg/CNRS

    • Contact