SIMBAD references

2006AJ....132.1248K - Astron. J., 132, 1248-1255 (2006/September-0)

Massive star cluster populations in irregular galaxies as probable younger counterparts of old metal-rich globular cluster populations in spheroids.

KRAVTSOV V.V.

Abstract (from CDS):

Peak metallicities of metal-rich populations of globular clusters (MRGCs) belonging to early-type galaxies and spheroidal subsystems of spiral galaxies (spheroids) of different mass fall within the somewhat conservative -0.7≤[Fe/H]≤-0.3 range. Indeed, if possible age effects are taken into account, this metallicity range might become smaller. Irregular galaxies such as the Large Magellanic Cloud (LMC), with longer timescales of formation and lower star formation (SF) efficiency, do not contain old MRGCs with [Fe/H]>-1.0, but they are observed to form populations of young/intermediate-age massive star clusters (MSCs) with masses exceeding 104 M. Their formation is widely believed to be an accidental process fully dependent on external factors. From the analysis of available data on the populations and their hosts, including intermediate-age populous star clusters in the LMC, we find that their most probable mean metallicities fall within -0.7≤[Fe/H]≤-0.3, as the peak metallicities of MRGCs do, irrespective of signs of interaction. Moreover, both the disk giant metallicity distribution function (MDF) in the LMC and the MDFs for old giants in the halos of massive spheroids exhibit a significant increase toward [Fe/H]~-0.5. That is in agreement with a correlation found between SF activity in galaxies and their metallicity. The formation of both the old MRGCs in spheroids and MSC populations in irregular galaxies probably occurs at approximately the same stage of the host galaxies' chemical evolution and is related to the essentially increased SF activity in the hosts around the same metallicity that is achieved very early in massive spheroids, later in lower mass spheroids, and much later in irregular galaxies. Changes in the interstellar dust, particularly in elemental abundances in dust grains and in the mass distribution function of the grains, may be among the factors regulating star and MSC formation activity in galaxies. Strong interactions and mergers affecting the MSC formation presumably play an additional role, although they can substantially intensify the internally regulated MSC formation process. Several implications of our suggestions are briefly discussed.

Abstract Copyright:

Journal keyword(s): Galaxies: Evolution - Galaxies: Formation - Galaxies: Star Clusters

Simbad objects: 23

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2006AJ....132.1248K and select 'bookmark this link' or equivalent in the popup menu