2005A&A...441..961K


Query : 2005A&A...441..961K

2005A&A...441..961K - Astronomy and Astrophysics, volume 441, 961-973 (2005/10-3)

Photon dominated regions in the spiral arms of M83 and M51.

KRAMER C., MOOKERJEA B., BAYET E., GARCIA-BURILLO S., GERIN M., ISRAEL F.P., STUTZKI J. and WOUTERLOOT J.G.A.

Abstract (from CDS):

We present [CI] 3P1-3P0 spectra at four spiral arm positions and the nuclei of the nearby galaxies M83 and M51 obtained at the JCMT. The spiral arm positions lie at galacto-centric distances of between 2kpc and 6kpc. This data is complemented with maps of CO 1-0, 2-1, and 3-2, and ISO/LWS far-infrared data of [CII] (158µm), [OI] (63µm), and [NII] (122µm) allowing for the investigation of a complete set of all major gas cooling lines. From the intensity of the [NII] line, we estimate that between 15% and 30% of the observed [CII] emission originates from the dense ionized phase of the ISM. The analysis indicates that emission from the diffuse ionized medium is negligible. In combination with the FIR dust continuum, we find gas heating efficiencies below ∼0.21% in the nuclei, and between 0.25 and 0.36% at the outer positions. Comparison with models of photon-dominated regions (PDRs) with the standard ratios [OI](63)/[CII]PDR and ([OI](63)+[CII]PDR) vs. TIR, the total infrared intensity, yields two solutions. The physically most plausible solution exhibits slightly lower densities and higher FUV fields than found when using a full set of line ratios, [CII]_ PDR_/[CI](1-0), [CI](1-0)/CO(3-2), CO(3-2)/CO(1-0), [CII]/CO(3-2), and, [OI](63)/[CII]PDR. The best fits to the latter ratios yield densities of 104cm–3 and FUV fields of ∼G0=20-30 times the average interstellar field without much variation. At the outer positions, the observed total infrared intensities are in agreement with the derived best fitting FUV intensities. The ratio of the two intensities lies at 4-5 at the nuclei, indicating the presence of other mechanisms heating the dust. The [CI] area filling factors lie below 2% at all positions, consistent with low volume filling factors of the emitting gas. The fit of the model to the line ratios improves significantly if we assume that [CI] stems from a larger region than CO 2-1. Improved modelling would need to address the filling factors of the various submm and FIR tracers, taking into consideration the presence of density gradients of the emitting gas by including cloud mass and size distributions within the beam.

Abstract Copyright:

Journal keyword(s): galaxies: ISM - galaxies: structure - galaxies: individual: M83, M51 - ISM: structure - infrared: galaxies - submillimeter

Simbad objects: 8

goto Full paper

goto View the references in ADS

Number of rows : 8
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 NGC 253 SyG 00 47 33.134 -25 17 19.68   8.03   6.94 8.1 ~ 3336 2
2 M 33 GiG 01 33 50.8965749232 +30 39 36.630403128 6.17 6.27 5.72     ~ 5838 1
3 NGC 1313 AG? 03 18 16.046 -66 29 53.74   10.06 10.0 9.40 10.4 ~ 688 2
4 NGC 3256 Sy2 10 27 51.284 -43 54 13.55   11.83 11.33 10.62 11.9 ~ 848 2
5 M 51 Sy2 13 29 52.698 +47 11 42.93   9.26 8.36 8.40   ~ 4330 4
6 CCM 10 HII 13 29 59.700 +47 13 58.87           ~ 29 0
7 M 83 SBG 13 37 00.91920 -29 51 56.7400 8.85 8.11 7.52 7.21   ~ 2573 2
8 NGC 6946 H2G 20 34 52.332 +60 09 13.24   10.5       ~ 2529 2

To bookmark this query, right click on this link: simbad:objects in 2005A&A...441..961K and select 'bookmark this link' or equivalent in the popup menu