SIMBAD references

2002MNRAS.334..149W - Mon. Not. R. Astron. Soc., 334, 149-155 (2002/July-3)

Gravitational radiation damping and the three-body problem.

WARDELL Z.E.

Abstract (from CDS):

A model of three-body motion is developed which includes the effects of gravitational radiation reaction. The radiation reaction due to the emission of gravitational waves is the only post-Newtonian effect that is included here. For simplicity, all of the motion is taken to be planar. Two of the masses are viewed as a binary system, and the third mass, whose motion will be a fixed orbit around the centre-of-mass of the binary system, is viewed as a perturbation. This model aims to describe the motion of a relativistic binary pulsar that is perturbed by a third mass. Numerical integration of this simplified model reveals that, given the right initial conditions and parameters, one can see resonances. These (m,n) resonances are defined by the resonance condition, mω =2n Ω, where m and n are relatively prime integers, and ω and Ω are the angular frequencies of the binary orbit and third mass orbit (around the centre-of-mass of the binary), respectively. The resonance condition consequently fixes a value for the semimajor axis of the binary orbit for the duration of the resonance; therefore the binary energy remains constant on average, while its angular momentum changes during the resonance.

Abstract Copyright: 2002 Blackwell Science Ltd

Journal keyword(s): gravitational waves - relativity - celestial mechanics

Simbad objects: 2

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2002MNRAS.334..149W and select 'bookmark this link' or equivalent in the popup menu