iPTF 13ajg , the SIMBAD biblio

iPTF 13ajg , the SIMBAD biblio (62 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.19CEST14:37:57


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2014ApJ...797...24V viz 4077 T K A S   X C       101 20 71 The hydrogen-poor superluminous supernova
iPTF 13ajg and its host galaxy in absorption and emission.
VREESWIJK P.M., SAVAGLIO S., GAL-YAM A., et al.
2015Natur.523..189G 14 8 225 A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. GREINER J., MAZZALI P.A., KANN A., et al.
2015MNRAS.452.1567C 41           X         1 23 78 The host galaxy and late-time evolution of the superluminous supernova PTF12dam. CHEN T.-W., SMARTT S.J., JERKSTRAND A., et al.
2015MNRAS.452.3869N 136       D     X         4 55 156 On the diversity of superluminous supernovae: ejected mass as the dominant factor. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2016Sci...351..257D 94           X         2 12 172 ASASSN-15lh: A highly super-luminous supernova. DONG S., SHAPPEE B.J., PRIETO J.L., et al.
2016ApJ...818L...8S 87             C       1 7 51 DES14X3taz: a Type I superluminous supernova showing a luminous, rapidly cooling initial pre-peak bump. SMITH M., SULLIVAN M., D'ANDREA C.B., et al.
2016ApJ...818...77O 16       D               2 10 7 Quark-novae occurring in massive binaries : a universal energy source in superluminous supernovae with double-peaked light curves. OUYED R., LEAHY D. and KONING N.
2016ApJ...819...51L 81             C       1 18 25 Late time multi-wavelength observations of Swift J1644+5734: a luminous Optical/IR bump and quiescent X-ray emission. LEVAN A.J., TANVIR N.R., BROWN G.C., et al.
2016MNRAS.457L..79N 138       D     X   F     3 14 35 Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves. NICHOLL M. and SMARTT S.J.
2016MNRAS.458.3455M 1591   K   D S   X C       38 10 101 Spectrum formation in superluminous supernovae (Type I). MAZZALI P.A., SULLIVAN M., PIAN E., et al.
2016MNRAS.460L..55M 16       D               1 23 10 Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. MORIYA T.J. and TAURIS T.M.
2017ApJ...835L...8N 692           X C F     15 13 38 An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine. NICHOLL M., BERGER E., MARGUTTI R., et al.
2017ApJ...835...58V viz 733           X C       17 14 40 On the early-time excess emission in hydrogen-poor superluminous supernovae. VREESWIJK P.M., LELOUDAS G., GAL-YAM A., et al.
2017MNRAS.464.3568P 626       D     X C F     14 25 46 The volumetric rate of superluminous supernovae at z ∼ 1. PRAJS S., SULLIVAN M., SMITH M., et al.
2017ApJ...840...12Y 17       D               3 38 51 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...840...57Y 123           X         3 22 38 Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. YAN L., QUIMBY R., GAL-YAM A., et al.
2017A&A...602A...9C 204           X         5 25 37 The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. CHEN T.-W., NICHOLL M., SMARTT S.J., et al.
2017MNRAS.468.4642I 42           X         1 35 37 Complexity in the light curves and spectra of slow-evolving superluminous supernovae. INSERRA C., NICHOLL M., CHEN T.-W., et al.
2017ApJ...845...85L viz 98       D       C       2 47 77 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017MNRAS.470.4241P 327           X C F     6 6 13 DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang. PAN Y.-C., FOLEY R.J., SMITH M., et al.
2017ApJ...850...55N 20       D               2 41 176 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2016ATel.8952....1C 40           X         1 6 1 Classification of 5 DES supernovae by MMT. CHALLIS P., KIRSHNER R., MANDEL K., et al.
2018ApJ...852...81L viz 84             C       1 32 93 Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. LUNNAN R., CHORNOCK R., BERGER E., et al.
2018MNRAS.473.1258S 100       D     X         3 75 131 Cosmic evolution and metal aversion in superluminous supernova host galaxies. SCHULZE S., KRUHLER T., LELOUDAS G., et al.
2018MNRAS.474..573O 100       D     X         3 9 16 Radio emission from embryonic superluminous supernova remnants. OMAND C.M.B., KASHIYAMA K. and MURASE K.
2018A&A...609A..83I 86             C       1 3 14 Euclid: Superluminous supernovae in the Deep Survey. INSERRA C., NICHOL R.C., SCOVACRICCHI D., et al.
2018ApJ...854...37S 412           X C       9 13 12 Studying the ultraviolet spectrum of the first spectroscopically confirmed Supernova at redshift two. SMITH M., SULLIVAN M., NICHOL R.C., et al.
2018ApJ...854..175I 16       D               1 48 19 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018ApJ...855....2Q 59       D     X         2 63 93 Spectra of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. QUIMBY R.M., DE CIA A., GAL-YAM A., et al.
2018A&A...611A..45R 82           X         2 47 13 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018ApJ...858...91Y 865   K A D     X         22 9 10 Far-UV HST spectroscopy of an unusual hydrogen-poor superluminous supernova: SN2017egm. YAN L., PERLEY D.A., DE CIA A., et al.
2018ApJ...860..100D viz 554       D     X         14 41 119 Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. DE CIA A., GAL-YAM A., RUBIN A., et al.
2018NatAs...2..887L 1 14 14 A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. LUNNAN R., FRANSSON C., VREESWIJK P.M., et al.
2018ApJ...867..113M 16       D               2 37 11 Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2016ATel.9700....1G 40           X         1 2 ~ Classification of DES16C2nm as a SLSN at z=1.998 . GALBANY L., D'ANDREA C., PRAJS S., et al.
2018ApJ...869..166V 16       D               1 58 6 Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2019MNRAS.482.1545S viz 100       D         F     2 320 54 The Berkeley sample of stripped-envelope supernovae. SHIVVERS I., FILIPPENKO A.V., SILVERMAN J.M., et al.
2019ApJ...874...68C 59       D     X         2 32 1 A systematic study of superluminous supernova light-curve models using clustering. CHATZOPOULOS E. and TUMINELLO R.
2019ApJ...882..102G 125           X C       2 11 ~ A simple analysis of Type I superluminous supernova peak spectra: composition, expansion velocities, and dynamics. GAL-YAM A.
2018ATel11790....1B 41           X         1 4 ~ UV Spectroscopy of the Superluminous Supernova SN2018bsz. BLANCHARD P., NICHOLL M., CHORNOCK R., et al.
2020ApJ...897..114B 17       D               1 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020ApJ...904...74G 17       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2020A&A...643A..47O 17       D               1 93 ~ The interacting nature of dwarf galaxies hosting superluminous supernovae. ORUM S.V., IVENS D.L., STRANDBERG P., et al.
2021ApJ...909...24K 17       D               2 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021MNRAS.502.1678K 261           X C       5 51 12 SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021ApJ...908..249M 44           X         1 8 ~ Constraints on the rate of supernovae lasting for more than a year from Subaru/Hyper Suprime-Cam. MORIYA T.J., JIANG J.-A., YASUDA N., et al.
2021MNRAS.504.2535I 17       D               1 31 24 The first Hubble diagram and cosmological constraints using superluminous supernovae. INSERRA C., SULLIVAN M., ANGUS C.R., et al.
2021ApJS..255...29S viz 17       D               1 893 63 The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. SCHULZE S., YARON O., SOLLERMAN J., et al.
2021MNRAS.508.4342P 44           X         1 26 6 Transitional events in the spectrophotometric regime between stripped envelope and superluminous supernovae. PRENTICE S.J., INSERRA C., SCHULZE S., et al.
2019ATel12604....1C 42           X         1 5 ~ GREAT followup of SN 2019cca/ZTF19aajwogx: a superluminous supernova at redshift 0.42. CHEN T.-W., SCHWEYER T., INSERRA C., et al.
2022ApJ...925..211M 184           X C       3 2 10 Discovering Supernovae at the Epoch of Reionization with the Nancy Grace Roman Space Telescope. MORIYA T.J., QUIMBY R.M. and ROBERTSON B.E.
2022ApJ...931..153S 18       D               1 84 5 Constraints on the Explosion Timescale of Core-collapse Supernovae Based on Systematic Analysis of Light Curves. SAITO S., TANAKA M., SAWADA R., et al.
2022MNRAS.514.2627C 762           X C       16 63 5 A puzzle solved after two decades: SN 2002gh among the brightest of superluminous supernovae. CARTIER R., HAMUY M., CONTRERAS C., et al.
2022ApJ...933...14H 18       D               1 35 28 Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. HOSSEINZADEH G., BERGER E., METZGER B.D., et al.
2022A&A...666A.157M 137           X         3 2 7 Euclid: Searching for pair-instability supernovae with the Deep Survey. MORIYA T.J., INSERRA C., TANAKA M., et al.
2022ApJ...940...69K 108       D     X         3 32 2 Premaximum Spectroscopic Diversity of Hydrogen-poor Superluminous Supernovae. KONYVES-TOTH R.
2022ApJ...941..107G 45           X         1 238 16 Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. GOMEZ S., BERGER E., NICHOLL M., et al.
2023ApJ...943...41C 19       D               17 71 17 The Hydrogen-poor Superluminous Supernovae from the Zwicky Transient Facility Phase I Survey. I. Light Curves and Measurements. CHEN Z.H., YAN L., KANGAS T., et al.
2023ApJ...944L..49W 47           X         1 21 1 SN 2019ewu: A Peculiar Supernova with Early Strong Carbon and Weak Oxygen Features from a New Sample of Young SN Ic Spectra. WILLIAMSON M., VOGL C., MODJAZ M., et al.
2023ApJ...954...44K 19       D               1 29 ~ Type W and Type 15bn Subgroups of Hydrogen-poor Superluminous Supernovae: Premaximum Diversity, Postmaximum Homogeneity? KONYVES-TOTH R. and SELI B.
2023MNRAS.526.1822K 112       D         F     2 31 ~ Reduction of supernova light curves by vector Gaussian processes. KORNILOV M.V., SEMENIKHIN T.A. and PRUZHINSKAYA M.V.
2024ApJ...961..169H 20       D               2 110 ~ An Extensive Hubble Space Telescope Study of the Offset and Host Light Distributions of Type I Superluminous Supernovae. HSU B., BLANCHARD P.K., BERGER E., et al.

goto View the references in ADS