SWIFT J1112.2-8238 , the SIMBAD biblio

SWIFT J1112.2-8238 , the SIMBAD biblio (60 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.19CEST22:23:30


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2013ApJS..209...14K viz 445       D S   X C       10 256 426 The Swift/BAT hard X-ray transient monitor. KRIMM H.A., HOLLAND S.T., CORBET R.H.D., et al.
2011ATel.3463....1K 230 T         X         5 4 3 Swift reports the detection of a new transient source
Swift J1112.2-8238.
KRIMM H.A., KENNEA J.A., HOLLAND S.T., et al.
2011ATel.3469....1B 116 T         X         2 1 2 Gemini Optical Observations of
Swift J1112.2-8238.
BERGER E. and CHORNOCK R.
2015MNRAS.452.4297B 1736 T   A     X C       42 11 102
Swift J1112.2-8238: a candidate relativistic tidal disruption flare.
BROWN G.C., LEVAN A.J., STANWAY E.R., et al.
2016ApJ...816L..10C 40           X         1 5 3 X-ray afterglow of Swift J1644+57: a Compton echo? CHENG K.S., CHERNYSHOV D.O., DOGIEL V.A., et al.
2016ApJ...816...20L 41           X         1 7 13 IGR J12580+0134: the first tidal disruption event with an off-beam relativistic jet. LEI W.-H., YUAN Q., ZHANG B., et al.
2016ApJ...818L..21F 49           X         1 15 149 Tidal disruption events prefer unusual host galaxies. FRENCH K.D., ARCAVI I. and ZABLUDOFF A.
2016MNRAS.455.3612C 45           X         1 5 29 Post-periapsis pancakes: sustenance for self-gravity in tidal disruption events. COUGHLIN E.R., NIXON C., BEGELMAN M.C., et al.
2016ApJ...819....3M 87           X         2 9 70 Optical thermonuclear transients from tidal compression of white dwarfs as tracers of the low end of the massive black hole mass function. MacLEOD M., GUILLOCHON J., RAMIREZ-RUIZ E., et al.
2016ApJ...819...51L 202           X         5 18 25 Late time multi-wavelength observations of Swift J1644+5734: a luminous Optical/IR bump and quiescent X-ray emission. LEVAN A.J., TANVIR N.R., BROWN G.C., et al.
2016ApJ...825...47P 401     A D S   X         10 6 5 Search for high-energy gamma-ray emission from tidal disruption events with the Fermi large area telescope. PENG F.-K., TANG Q.-W. and WANG X.-Y.
2016PASJ...68...58K 56       D     X C       1 24 9 Hard X-ray luminosity function of tidal disruption events: First results from the MAXI extragalactic survey. KAWAMURO T., UEDA Y., SHIDATSU M., et al.
2016MNRAS.461.3375Y 120           X   F     2 6 5 Catching jetted tidal disruption events early in millimetre. YUAN Q., WANG Q.D., LEI W., et al.
2016ApJ...833..110I 42           X         1 13 29 Are ultra-long gamma-ray bursts caused by blue supergiant collapsars, newborn magnetars, or white dwarf tidal disruption events? IOKA K., HOTOKEZAKA K. and PIRAN T.
2016ApJ...833..200L 40           X         1 5 3 Modeling the gamma-ray emission in the Galactic Center with a fading cosmic-ray accelerator. LIU R.-Y., WANG X.-Y., PROSEKIN A., et al.
2017A&A...598A..29S 43           X         1 13 29 XMMSL1 J074008.2-853927: a tidal disruption event with thermal and non-thermal components. SAXTON R.D., READ A.M., KOMOSSA S., et al.
2017ApJ...838....3S 51           X         1 3 31 High-energy neutrino flares from X-ray bright and dark tidal disruption events. SENNO N., MURASE K. and MESZAROS P.
2017ApJ...838..149A 951       D     X C       23 99 187 New physical insights about tidal disruption events from a comprehensive observational inventory At X-ray wavelengths. AUCHETTL K., GUILLOCHON J. and RAMIREZ-RUIZ E.
2017MNRAS.469..314K 41           X         1 4 3 TDE fallback cut-off due to a pre-existing accretion disc. KATHIRGAMARAJU A., BARNIOL DURAN R. and GIANNIOS D.
2017ApJ...844...46B viz 51           X         1 12 124 IPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy. BLAGORODNOVA N., GEZARI S., HUNG T., et al.
2017A&A...603A..76G 42           X         1 8 9 Can we observe neutrino flares in coincidence with explosive transients? GUEPIN C. and KOTERA K.
2017MNRAS.469.1354D 43           X         1 12 29 Can tidal disruption events produce the IceCube neutrinos? DAI L. and FANG K.
2017MNRAS.471.1141L 41           X         1 8 4 Radiative interaction between the relativistic jet and optically thick envelope in tidal disruption events. LU W., KROLIK J., CRUMLEY P., et al.
2017MNRAS.471.4286F 123           X         3 4 5 Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts. FIALKOV A. and LOEB A.
2017MNRAS.472.4469B 1421 T   A D     X C F     33 13 3 Late-time observations of the relativistic tidal disruption flare candidate
Swift J1112.2-8238.
BROWN G.C., LEVAN A.J., STANWAY E.R., et al.
2018MNRAS.475.4011B 41           X         1 11 8 Long-term radio and X-ray evolution of the tidal disruption event ASASSN-14li. BRIGHT J.S., FENDER R.P., MOTTA S.E., et al.
2018MNRAS.478.3016W 250           X         6 4 14 Super-Eddington accretion in tidal disruption events: the impact of realistic fallback rates on accretion rates. WU S., COUGHLIN E.R. and NIXON C.
2018ApJ...865..128L 41           X         1 19 7 On the missing energy puzzle of tidal disruption events. LU W. and KUMAR P.
2018A&A...617A.122K viz 41           X         1 56 15 The optical/NIR afterglow of GRB 111209A: Complex yet not unprecedented. KANN D.A., SCHADY P., OLIVARES E.F., et al.
2019MNRAS.483..565C 256           X         6 9 51 GRRMHD simulations of tidal disruption event accretion discs around supermassive black holes: jet formation, spectra, and detectability. CURD B. and NARAYAN R.
2019MNRAS.486.3388D 42           X         1 8 1 Evidence for a TDE origin of the radio transient Cygnus A-2. DE VRIES M.N., WISE M.W., NULSEN P.E.J., et al.
2019MNRAS.487.4965Z 42           X         1 3 ~ Tidal disruption event discs around supermassive black holes: disc warp and inclination evolution. ZANAZZI J.J. and LAI D.
2019MNRAS.488.1878N 85               F     1 39 44 The tidal disruption event AT2017eqx: spectroscopic evolution from hydrogen rich to poor suggests an atmosphere and outflow. NICHOLL M., BLANCHARD P.K., BERGER E., et al.
2019A&A...630A..98S 84             C       1 24 ~ XMMSL2 J144605.0+685735: a slow tidal disruption event. SAXTON R.D., READ A.M., KOMOSSA S., et al.
2019ApJ...884L..34P 42           X         1 7 ~ CDF-S XT1 and XT2: white dwarf tidal disruption events by intermediate-mass black holes? PENG Z.-K., YANG Y.-S., SHEN R.-F., et al.
2019ApJ...886..114H 42           X         1 3 ~ Neutrino emissions from tidal disruption remnants. HAYASAKI K. and YAMAZAKI R.
2020MNRAS.491.1771W 85           X         2 6 ~ Polarimetry of relativistic tidal disruption event Swift J2058+0516. WIERSEMA K., HIGGINS A.B., LEVAN A.J., et al.
2020ApJ...892L...1L 43           X         1 11 ~ Optical polarimetry of the tidal disruption event AT2019DSG. LEE C.-H., HUNG T., MATHESON T., et al.
2020ApJ...903..116A 171           X C       3 21 41 Caltech-NRAO Stripe 82 Survey (CNSS). III. The first radio-discovered tidal disruption event, CNSS J0019+00. ANDERSON M.M., MOOLEY K.P., HALLINAN G., et al.
2020MNRAS.499.3158C 85           X         2 6 ~ Structured, relativistic jets driven by radiation. COUGHLIN E.R. and BEGELMAN M.C.
2021A&A...645A..18D viz 17       D               1 1681 ~ Onboard catalogue of known X-ray sources for SVOM/ECLAIRs. DAGONEAU N., SCHANNE S., RODRIGUEZ J., et al.
2021MNRAS.504.5144M 87               F     1 29 ~ A maximum X-ray luminosity scale of disc-dominated tidal destruction events. MUMMERY A.
2021MNRAS.507.4196M 87             C       1 35 16 Radio constraint on outflows from tidal disruption events. MATSUMOTO T. and PIRAN T.
2021ApJ...920...12H 45           X         1 9 9 A possible tidal disruption event candidate in the black hole binary system of OJ 287. HUANG S., HU S., YIN H., et al.
2022ApJ...925..220R 45           X         1 14 8 FIRST J153350.8+272729: The Radio Afterglow of a Decades-old Tidal Disruption Event. RAVI V., DYKAAR H., CODD J., et al.
2022ApJ...933..176S 45           X         1 17 10 A Late-time Radio Flare Following a Possible Transition in Accretion State in the Tidal Disruption Event AT 2019azh. SFARADI I., HORESH A., FENDER R., et al.
2022A&A...664A.158R viz 45           X         1 247 5 Energetic nuclear transients in luminous and ultraluminous infrared galaxies. REYNOLDS T.M., MATTILA S., EFSTATHIOU A., et al.
2022ApJ...937....8Y 45           X         1 19 10 The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflection, and Rapid Evolution of the Disk-Corona System. YAO Y., LU W., GUOLO M., et al.
2022MNRAS.517.6013E 225           X         5 3 3 Simulated optical light curves of super-Eddington tidal disruption events with ZEBRA flows. EYLES-FERRIS R.A.J., STARLING R.L.C., O'BRIEN P.T., et al.
2022Natur.612..430A 46           X         1 14 15 A very luminous jet from the disruption of a star by a massive black hole. ANDREONI I., COUGHLIN M.W., PERLEY D.A., et al.
2023ApJ...943L..18C 47           X         1 16 1 Linear and Circular Polarimetry of the Optically Bright Relativistic Tidal Disruption Event AT 2022cmc. CIKOTA A., LELOUDAS G., BULLA M., et al.
2023MNRAS.519.6199C 47           X         1 63 3 Jet power, intrinsic γ-ray luminosity, and accretion in jetted AGNs. CHEN Y., GU Q., FAN J., et al.
2023NatAs...7...88P 188           X C       3 11 13 The Birth of a Relativistic Jet Following the Disruption of a Star by a Cosmological Black Hole. PASHAM D.R., LUCCHINI M., LASKAR T., et al.
2023ApJ...945..142S 93             C       1 13 3 A Candidate Relativistic Tidal Disruption Event at 340 Mpc. SOMALWAR J.J., RAVI V., DONG D.Z., et al.
2023PASP..135c4101G 19       D               1 153 1 A Census of Archival X-Ray Spectra for Modeling Tidal Disruption Events. GOLDTOOTH A., ZABLUDOFF A.I., WEN S., et al.
2023MNRAS.522.4028M 47           X         1 7 2 Synchrotron afterglow model for AT 2022cmc: jetted tidal disruption event or engine-powered supernova? MATSUMOTO T. and METZGER B.D.
2023ApJ...954...17Z 47           X         1 8 ~ Choked Jets in Expanding Envelope as the Origin of the Neutrino Emission Associated with Tidal Disruption Events. ZHENG J.-H., LIU R.-Y. and WANG X.-Y.
2023ApJ...957L...9T 93           X         2 5 ~ A Unified Theory of Jetted Tidal Disruption Events: From Promptly Escaping Relativistic to Delayed Transrelativistic Jets. TEBOUL O. and METZGER B.D.
2024ApJ...961L...2B 50           X         1 6 ~ The Peak of the Fallback Rate from Tidal Disruption Events: Dependence on Stellar Type. BANDOPADHYAY A., FANCHER J., ATHIAN A., et al.
2024ApJ...963...66Z 50           X         1 9 ~ AT2022cmc: A Tidal Disruption Event with a Two-component Jet in a Bondi-profile Circumnuclear Medium. ZHOU C., ZHU Z.-P., LEI W.-H., et al.

goto View the references in ADS