other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
SN 2016eay , the SIMBAD biblio (72 results) | C.D.S. - SIMBAD4 rel 1.8 - 2023.09.30CEST08:26:01 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2017ApJ...835L...8N | 2908 | T K A | X C F | 68 | 13 | 38 |
An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine. |
NICHOLL M., BERGER E., MARGUTTI R., et al. | |
2016ATel.9071....1K | 163 | T | X | 3 | 3 | 4 |
Spectroscopic classification of supernova Gaia16apd with the Nordic Optical Telescope. |
KANGAS T., ELIAS-ROSA N., LUNDQVIST P., et al. | |
2017ApJ...839L...6S | 356 | T K A | X | 8 | 3 | 7 | The magnetar model of the superluminous supernova Gaia16apd and the explosion jet feedback mechanism. | SOKER N. | |
2017ApJ...840...12Y | 17 | D | 3 | 38 | 51 | A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. | YU Y.-W., ZHU J.-P., LI S.-Z., et al. | ||
2017ApJ...840...57Y | 3977 | T K A | S X C | 94 | 22 | 38 |
Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. |
YAN L., QUIMBY R., GAL-YAM A., et al. | |
2017ApJ...842...26L | 222 | D | X C | 5 | 26 | 23 | A Monte Carlo approach to magnetar-powered transients. I. Hydrogen-deficient superluminous supernovae. | LIU L.-D., WANG S.-Q., WANG L.-J., et al. | |
2017MNRAS.466.2633S | 44 | X | 1 | 13 | 44 | Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae. | SUZUKI A. and MAEDA K. | ||
2017MNRAS.469.1246K | 2636 | T K A | D | X C | 63 | 13 | 36 |
Gaia16apd - a link between fast and slowly declining type I superluminous supernovae. |
KANGAS T., BLAGORODNOVA N., MATTILA S., et al. |
2017ApJ...845L...2T | 1425 | T K A | X C | 33 | 6 | 6 |
Ultraviolet light curves of Gaia16apd in superluminous supernova models. |
TOLSTOV A., ZHIGLO A., NOMOTO K., et al. | |
2017ATel10498....1D | 82 | X | 2 | 3 | ~ | Re-classification of Gaia17biu/SN 2017egm: the closest hydrogen-poor superluminous supernova yet found, located in a massive host galaxy. | DONG S., CHEN P., BENETTI S., et al. | ||
2017MNRAS.470.3566C | 636 | K | D | X C F | 14 | 22 | 54 | Superluminous supernova progenitors have a half-solar metallicity threshold. | CHEN T.-W., SMARTT S.J., YATES R.M., et al. |
2017ApJ...848....6Y | 415 | X C | 9 | 23 | 91 | Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. | YAN L., LUNNAN R., PERLEY D.A., et al. | ||
2017ApJ...850...55N | 638 | D | X C | 15 | 41 | 176 | The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. | NICHOLL M., GUILLOCHON J. and BERGER E. | |
2017ApJ...851...95S | 17 | D | 1 | 24 | 24 | Magnetar-powered superluminous supernovae must first be exploded by jets. | SOKER N. and GILKIS A. | ||
2018ApJ...852...81L ![]() |
44 | X | 1 | 32 | 93 | Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. | LUNNAN R., CHORNOCK R., BERGER E., et al. | ||
2018ApJ...853...57B | 754 | X C | 17 | 27 | 66 | Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a "normal," massive, metal-rich spiral galaxy. | BOSE S., DONG S., PASTORELLO A., et al. | ||
2018ApJ...854...37S | 903 | A | X C | 21 | 13 | 12 | Studying the ultraviolet spectrum of the first spectroscopically confirmed Supernova at redshift two. | SMITH M., SULLIVAN M., NICHOL R.C., et al. | |
2018ApJ...854..175I | 59 | D | X | 2 | 48 | 19 | A statistical approach to identify superluminous supernovae and probe their diversity. | INSERRA C., PRAJS S., GUTIERREZ C.P., et al. | |
2018ApJ...855....2Q | 43 | X | 1 | 63 | 93 | Spectra of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. | QUIMBY R.M., DE CIA A., GAL-YAM A., et al. | ||
2018ApJ...856...56C | 979 | D | X C F | 22 | 26 | 32 | Jets in hydrogen-poor superluminous supernovae: constraints from a comprehensive analysis of radio observations. | COPPEJANS D.L., MARGUTTI R., GUIDORZI C., et al. | |
2016ATel.9074....1B | 162 | T | X | 3 | 3 | 2 |
Swift/UVOT Observations for SLSN-I Gaia16apd. |
BLAGORODNOVA N., YAN L., QUIMBY R., et al. | |
2018ApJ...858...91Y | 1297 | K A | D | X C | 31 | 9 | 10 | Far-UV HST spectroscopy of an unusual hydrogen-poor superluminous supernova: SN2017egm. | YAN L., PERLEY D.A., DE CIA A., et al. |
2018ApJ...858..115A | 38 | A | 1 | 5 | 65 | Related progenitor models for long-duration gamma-ray bursts and Type Ic superluminous supernovae. | AGUILERA-DENA D.R., LANGER N., MORIYA T.J., et al. | ||
2018MNRAS.478..110S | 376 | X C | 8 | 16 | 6 | Broad-band emission properties of central engine-powered supernova ejecta interacting with a circumstellar medium. | SUZUKI A. and MAEDA K. | ||
2016ATel.9158....1S | 122 | T | X | 2 | 1 | ~ | TLS Tautenburg observations of the SLSN Gaia 16apd. | SCHMIDL S., MERSCH R., KANN D.A., et al. | |
2018ApJ...864...45M ![]() |
43 | X | 1 | 37 | 58 | Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. | MARGUTTI R., CHORNOCK R., METZGER B.D., et al. | ||
2018ApJ...865....9B | 293 | X C | 6 | 18 | 9 | The Type I superluminous supernova PS16aqv: lightcurve complexity and deep limits on radioactive ejecta in a fast event. | BLANCHARD P.K., NICHOLL M., BERGER E., et al. | ||
2018NatAs...2..887L | 1 | 14 | 14 | A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. | LUNNAN R., FRANSSON C., VREESWIJK P.M., et al. | ||||
2018ApJ...867..113M | 17 | D | 2 | 37 | 11 | Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. | MORIYA T.J., NICHOLL M. and GUILLOCHON J. | ||
2018ApJ...869..166V | 17 | D | 1 | 58 | 6 | Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. | VILLAR V.A., NICHOLL M. and BERGER E. | ||
2018A&A...620A..67A | 419 | X C | 9 | 25 | 36 | A nearby super-luminous supernova with a long pre-maximum & "plateau" and strong C II features. | ANDERSON J.P., PESSI P.J., DESSART L., et al. | ||
2019ApJ...871..102N | 683 | K A | D | S X C | 15 | 20 | 55 | Nebular-phase spectra of superluminous supernovae: physical insights from observational and statistical properties. | NICHOLL M., BERGER E., BLANCHARD P.K., et al. |
2019A&A...621A.141D | 623 | A | X C | 14 | 16 | 33 | Simulations of light curves and spectra for superluminous Type Ic supernovae powered by magnetars. | DESSART L. | |
2019MNRAS.484.3443M | 43 | X | 1 | 7 | 1 | Synthetic spectra of energetic core-collapse supernovae and the early spectra of SN 2007bi and SN 1999as. | MORIYA T.J., MAZZALI P.A. and TANAKA M. | ||
2019RAA....19...63W | 43 | X | 1 | 28 | 3 | The Energy Sources of Superluminous Supernovae. | WANG S.-Q., WANG L.-J. and DAI Z.-G. | ||
2019ApJS..241...16M | 44 | X | 1 | 16 | 16 | First release of high-redshift superluminous supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). I. Photometric properties. | MORIYA T.J., TANAKA M., YASUDA N., et al. | ||
2019ApJS..241...17C | 44 | X | 1 | 11 | 11 | First release of high-redshift superluminous supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). II. Spectroscopic properties. | CURTIN C., COOKE J., MORIYA T.J., et al. | ||
2019ApJ...882..102G | 426 | X C | 9 | 11 | ~ | A simple analysis of Type I superluminous supernova peak spectra: composition, expansion velocities, and dynamics. | GAL-YAM A. | ||
2018ATel11790....1B | 125 | X | 3 | 4 | ~ | UV Spectroscopy of the Superluminous Supernova SN2018bsz. | BLANCHARD P., NICHOLL M., CHORNOCK R., et al. | ||
2020A&A...634A.107Y | 17 | D | 2 | 144 | 39 | Present-day mass-metallicity relation for galaxies using a new electron temperature method. | YATES R.M., SCHADY P., CHEN T.-W., et al. | ||
2020MNRAS.493.3264K ![]() |
44 | X | 1 | 22 | ~ | Electromagnetic counterparts to gravitational wave events from Gaia. | KOSTRZEWA-RUTKOWSKA Z., JONKER P.G., HODGKIN S.T., et al. | ||
2020ApJ...892...28K | 496 | D | X C | 11 | 20 | ~ | SN 2010kd: photometric and spectroscopic analysis of a slow-decaying superluminous supernova. | KUMAR A., PANDEY S.B., KONYVES-TOTH R., et al. | |
2020ApJ...897..114B | 17 | D | 1 | 67 | ~ | The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. | BLANCHARD P.K., BERGER E., NICHOLL M., et al. | ||
2020MNRAS.497..318L | 348 | X C F | 6 | 15 | ~ | SN 2018hti: a nearby superluminous supernova discovered in a metal-poor galaxy. | LIN W.L., WANG X.F., LI W.X., et al. | ||
2020ApJ...900...46Y ![]() |
175 | X C | 3 | 33 | 40 | SN2019dge: a helium-rich ultra-stripped envelope supernova. | YAO Y., DE K., KASLIWAL M.M., et al. | ||
2020ApJ...904...74G | 17 | D | 1 | 145 | ~ | FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. | GOMEZ S., BERGER E., BLANCHARD P.K., et al. | ||
2021MNRAS.500.5142F | 18 | D | 1 | 113 | 29 | From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory. | FROHMAIER C., ANGUS C.R., VINCENZI M., et al. | ||
2021ApJ...909...24K | 242 | D | X | 6 | 93 | ~ | Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. | KONYVES-TOTH R. and VINKO J. | |
2021MNRAS.502.1678K | 923 | A | X C | 20 | 51 | 12 | SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. | KUMAR A., KUMAR B., PANDEY S.B., et al. | |
2021MNRAS.502.2120F | 134 | X C | 2 | 23 | 16 | SN 2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. | FIORE A., CHEN T.-W., JERKSTRAND A., et al. | ||
2021ApJ...908..217S | 46 | X | 1 | 13 | 14 | Two-dimensional radiation-hydrodynamic simulations of supernova ejecta with a central power source. | SUZUKI A. and MAEDA K. | ||
2021ApJ...908..249M | 224 | X C | 4 | 8 | ~ | Constraints on the rate of supernovae lasting for more than a year from Subaru/Hyper Suprime-Cam. | MORIYA T.J., JIANG J.-A., YASUDA N., et al. | ||
2021ApJ...912...21E | 18 | D | 1 | 125 | 18 | Late-time radio and millimeter observations of superluminous supernovae and long gamma-ray bursts: implications for central engines, fast radio bursts, and obscured star formation. | EFTEKHARI T., MARGALIT B., OMAND C.M.B., et al. | ||
2021MNRAS.504.2535I | 18 | D | 1 | 31 | 24 | The first Hubble diagram and cosmological constraints using superluminous supernovae. | INSERRA C., SULLIVAN M., ANGUS C.R., et al. | ||
2021ApJ...917....9H | 476 | A | X C | 10 | 15 | 18 | Discovery of a fast iron low-ionization outflow in the early evolution of the nearby tidal disruption event AT 2019qiz. | HUNG T., FOLEY R.J., VEILLEUX S., et al. | |
2021ApJ...917...97W ![]() |
90 | C | 1 | 27 | 3 | ASASSN-14ms: the most energetic known explosion of a Type Ibn supernova and its physical origin. | WANG X., LIN W., ZHANG J., et al. | ||
2021A&A...652A..76H ![]() |
45 | X | 1 | 851 | 49 | Gaia Early Data Release 3. Gaia photometric science alerts. | HODGKIN S.T., HARRISON D.L., BREEDT E., et al. | ||
2021MNRAS.507.1229P | 90 | F | 1 | 39 | 18 | Photometric, polarimetric, and spectroscopic studies of the luminous, slow-decaying Type Ib SN 2012au. | PANDEY S.B., KUMAR A., KUMAR B., et al. | ||
2022MNRAS.512.2489O | 55 | X | 1 | 2 | 17 | Magnetorotational core collapse of possible gamma-ray burst progenitors - IV. A wider range of progenitors. | OBERGAULINGER M. and ALOY M.A. | ||
2022MNRAS.512.4484F | 653 | X C F | 12 | 24 | 4 | Close, bright, and boxy: the superluminous SN 2018hti. | FIORE A., BENETTI S., NICHOLL M., et al. | ||
2022MNRAS.513.4057S | 252 | D | X F | 5 | 32 | 8 | A mid-infrared study of superluminous supernovae. | SUN L., XIAO L. and LI G. | |
2022ApJ...931...32Y | 233 | X C | 4 | 4 | ~ | Optical Observations and Modeling of the Superluminous Supernova 2018lfe. | YIN Y., GOMEZ S., BERGER E., et al. | ||
2022ApJ...931..153S | 19 | D | 1 | 84 | 5 | Constraints on the Explosion Timescale of Core-collapse Supernovae Based on Systematic Analysis of Light Curves. | SAITO S., TANAKA M., SAWADA R., et al. | ||
2022MNRAS.514.5686P | 159 | D | X | 4 | 87 | 9 | Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. | PRENTICE S.J., MAGUIRE K., SIEBENALER L., et al. | |
2022ApJ...937...40K | 47 | X | 1 | 22 | 4 | Ultraviolet Spectroscopy and TARDIS Models of the Broad-lined Type Ic Supernova 2014ad. | KWOK L.A., WILLIAMSON M., JHA S.W., et al. | ||
2022MNRAS.517.2056G | 93 | X | 2 | 30 | 9 | SN 2020wnt: a slow-evolving carbon-rich superluminous supernova with no O II lines and a bumpy light curve. | GUTIERREZ C.P., PASTORELLO A., BERSTEN M., et al. | ||
2022ApJ...940...69K | 112 | D | X | 3 | 32 | 2 | Premaximum Spectroscopic Diversity of Hydrogen-poor Superluminous Supernovae. | KONYVES-TOTH R. | |
2022ApJ...941..107G | 47 | X | 1 | 238 | 16 | Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. | GOMEZ S., BERGER E., NICHOLL M., et al. | ||
2023MNRAS.521.2814K | 1000 | X C F | 18 | 24 | 1 | The rest-frame ultraviolet of superluminous supernovae - I. Potential as cosmological probes. | KHETAN N., COOKE J. and BRANCHESI M. | ||
2023ApJ...949...23Z | 350 | X C | 6 | 17 | 2 | SN 2017egm: A Helium-rich Superluminous Supernova with Multiple Bumps in the Light Curves. | ZHU J., JIANG N., DONG S., et al. | ||
2023ApJ...951...34T | 50 | X | 1 | 19 | 3 | Supernova 2020wnt: An Atypical Superluminous Supernova with a Hidden Central Engine. | TINYANONT S., WOOSLEY S.E., TAGGART K., et al. | ||
2023ApJ...951..134P | 100 | C | 1 | 15 | 5 | Chandra, HST/STIS, NICER, Swift, and TESS Detail the Flare Evolution of the Repeating Nuclear Transient ASASSN -14ko. | PAYNE A.V., AUCHETTL K., SHAPPEE B.J., et al. |
© Université de Strasbourg/CNRS
• Contact