SN 2016eay , the SIMBAD biblio

SN 2016eay , the SIMBAD biblio (72 results) C.D.S. - SIMBAD4 rel 1.8 - 2023.09.30CEST08:26:01

Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2017ApJ...835L...8N 2908 T K A     X C F     68 13 38 An ultraviolet excess in the superluminous supernova
Gaia16apd reveals a powerful central engine.
2016ATel.9071....1K 163 T         X         3 3 4 Spectroscopic classification of supernova
Gaia16apd with the Nordic Optical Telescope.
2017ApJ...839L...6S 356 T K A     X         8 3 7 The magnetar model of the superluminous supernova Gaia16apd and the explosion jet feedback mechanism. SOKER N.
2017ApJ...840...12Y 17       D               3 38 51 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...840...57Y 3977 T K A S   X C       94 22 38 Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova
YAN L., QUIMBY R., GAL-YAM A., et al.
2017ApJ...842...26L 222       D     X C       5 26 23 A Monte Carlo approach to magnetar-powered transients. I. Hydrogen-deficient superluminous supernovae. LIU L.-D., WANG S.-Q., WANG L.-J., et al.
2017MNRAS.466.2633S 44           X         1 13 44 Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae. SUZUKI A. and MAEDA K.
2017MNRAS.469.1246K 2636 T K A D     X C       63 13 36
Gaia16apd - a link between fast and slowly declining type I superluminous supernovae.
2017ApJ...845L...2T 1425 T K A     X C       33 6 6 Ultraviolet light curves of
Gaia16apd in superluminous supernova models.
2017ATel10498....1D 82           X         2 3 ~ Re-classification of Gaia17biu/SN 2017egm: the closest hydrogen-poor superluminous supernova yet found, located in a massive host galaxy. DONG S., CHEN P., BENETTI S., et al.
2017MNRAS.470.3566C 636   K   D     X C F     14 22 54 Superluminous supernova progenitors have a half-solar metallicity threshold. CHEN T.-W., SMARTT S.J., YATES R.M., et al.
2017ApJ...848....6Y 415           X C       9 23 91 Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. YAN L., LUNNAN R., PERLEY D.A., et al.
2017ApJ...850...55N 638       D     X C       15 41 176 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2017ApJ...851...95S 17       D               1 24 24 Magnetar-powered superluminous supernovae must first be exploded by jets. SOKER N. and GILKIS A.
2018ApJ...852...81L viz 44           X         1 32 93 Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. LUNNAN R., CHORNOCK R., BERGER E., et al.
2018ApJ...853...57B 754           X C       17 27 66 Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a "normal," massive, metal-rich spiral galaxy. BOSE S., DONG S., PASTORELLO A., et al.
2018ApJ...854...37S 903     A     X C       21 13 12 Studying the ultraviolet spectrum of the first spectroscopically confirmed Supernova at redshift two. SMITH M., SULLIVAN M., NICHOL R.C., et al.
2018ApJ...854..175I 59       D     X         2 48 19 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018ApJ...855....2Q 43           X         1 63 93 Spectra of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. QUIMBY R.M., DE CIA A., GAL-YAM A., et al.
2018ApJ...856...56C 979       D     X C F     22 26 32 Jets in hydrogen-poor superluminous supernovae: constraints from a comprehensive analysis of radio observations. COPPEJANS D.L., MARGUTTI R., GUIDORZI C., et al.
2016ATel.9074....1B 162 T         X         3 3 2 Swift/UVOT Observations for SLSN-I
2018ApJ...858...91Y 1297   K A D     X C       31 9 10 Far-UV HST spectroscopy of an unusual hydrogen-poor superluminous supernova: SN2017egm. YAN L., PERLEY D.A., DE CIA A., et al.
2018ApJ...858..115A 38     A               1 5 65 Related progenitor models for long-duration gamma-ray bursts and Type Ic superluminous supernovae. AGUILERA-DENA D.R., LANGER N., MORIYA T.J., et al.
2018MNRAS.478..110S 376           X C       8 16 6 Broad-band emission properties of central engine-powered supernova ejecta interacting with a circumstellar medium. SUZUKI A. and MAEDA K.
2016ATel.9158....1S 122 T         X         2 1 ~ TLS Tautenburg observations of the SLSN Gaia 16apd. SCHMIDL S., MERSCH R., KANN D.A., et al.
2018ApJ...864...45M viz 43           X         1 37 58 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018ApJ...865....9B 293           X C       6 18 9 The Type I superluminous supernova PS16aqv: lightcurve complexity and deep limits on radioactive ejecta in a fast event. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2018NatAs...2..887L 1 14 14 A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. LUNNAN R., FRANSSON C., VREESWIJK P.M., et al.
2018ApJ...867..113M 17       D               2 37 11 Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2018ApJ...869..166V 17       D               1 58 6 Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2018A&A...620A..67A 419           X C       9 25 36 A nearby super-luminous supernova with a long pre-maximum & "plateau" and strong C II features. ANDERSON J.P., PESSI P.J., DESSART L., et al.
2019ApJ...871..102N 683   K A D S   X C       15 20 55 Nebular-phase spectra of superluminous supernovae: physical insights from observational and statistical properties. NICHOLL M., BERGER E., BLANCHARD P.K., et al.
2019A&A...621A.141D 623     A     X C       14 16 33 Simulations of light curves and spectra for superluminous Type Ic supernovae powered by magnetars. DESSART L.
2019MNRAS.484.3443M 43           X         1 7 1 Synthetic spectra of energetic core-collapse supernovae and the early spectra of SN 2007bi and SN 1999as. MORIYA T.J., MAZZALI P.A. and TANAKA M.
2019RAA....19...63W 43           X         1 28 3 The Energy Sources of Superluminous Supernovae. WANG S.-Q., WANG L.-J. and DAI Z.-G.
2019ApJS..241...16M 44           X         1 16 16 First release of high-redshift superluminous supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). I. Photometric properties. MORIYA T.J., TANAKA M., YASUDA N., et al.
2019ApJS..241...17C 44           X         1 11 11 First release of high-redshift superluminous supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). II. Spectroscopic properties. CURTIN C., COOKE J., MORIYA T.J., et al.
2019ApJ...882..102G 426           X C       9 11 ~ A simple analysis of Type I superluminous supernova peak spectra: composition, expansion velocities, and dynamics. GAL-YAM A.
2018ATel11790....1B 125           X         3 4 ~ UV Spectroscopy of the Superluminous Supernova SN2018bsz. BLANCHARD P., NICHOLL M., CHORNOCK R., et al.
2020A&A...634A.107Y 17       D               2 144 39 Present-day mass-metallicity relation for galaxies using a new electron temperature method. YATES R.M., SCHADY P., CHEN T.-W., et al.
2020MNRAS.493.3264K viz 44           X         1 22 ~ Electromagnetic counterparts to gravitational wave events from Gaia. KOSTRZEWA-RUTKOWSKA Z., JONKER P.G., HODGKIN S.T., et al.
2020ApJ...892...28K 496       D     X C       11 20 ~ SN 2010kd: photometric and spectroscopic analysis of a slow-decaying superluminous supernova. KUMAR A., PANDEY S.B., KONYVES-TOTH R., et al.
2020ApJ...897..114B 17       D               1 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020MNRAS.497..318L 348           X C F     6 15 ~ SN 2018hti: a nearby superluminous supernova discovered in a metal-poor galaxy. LIN W.L., WANG X.F., LI W.X., et al.
2020ApJ...900...46Y viz 175           X C       3 33 40 SN2019dge: a helium-rich ultra-stripped envelope supernova. YAO Y., DE K., KASLIWAL M.M., et al.
2020ApJ...904...74G 17       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2021MNRAS.500.5142F 18       D               1 113 29 From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory. FROHMAIER C., ANGUS C.R., VINCENZI M., et al.
2021ApJ...909...24K 242       D     X         6 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021MNRAS.502.1678K 923     A     X C       20 51 12 SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021MNRAS.502.2120F 134           X C       2 23 16 SN 2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. FIORE A., CHEN T.-W., JERKSTRAND A., et al.
2021ApJ...908..217S 46           X         1 13 14 Two-dimensional radiation-hydrodynamic simulations of supernova ejecta with a central power source. SUZUKI A. and MAEDA K.
2021ApJ...908..249M 224           X C       4 8 ~ Constraints on the rate of supernovae lasting for more than a year from Subaru/Hyper Suprime-Cam. MORIYA T.J., JIANG J.-A., YASUDA N., et al.
2021ApJ...912...21E 18       D               1 125 18 Late-time radio and millimeter observations of superluminous supernovae and long gamma-ray bursts: implications for central engines, fast radio bursts, and obscured star formation. EFTEKHARI T., MARGALIT B., OMAND C.M.B., et al.
2021MNRAS.504.2535I 18       D               1 31 24 The first Hubble diagram and cosmological constraints using superluminous supernovae. INSERRA C., SULLIVAN M., ANGUS C.R., et al.
2021ApJ...917....9H 476     A     X C       10 15 18 Discovery of a fast iron low-ionization outflow in the early evolution of the nearby tidal disruption event AT 2019qiz. HUNG T., FOLEY R.J., VEILLEUX S., et al.
2021ApJ...917...97W viz 90             C       1 27 3 ASASSN-14ms: the most energetic known explosion of a Type Ibn supernova and its physical origin. WANG X., LIN W., ZHANG J., et al.
2021A&A...652A..76H viz 45           X         1 851 49 Gaia Early Data Release 3. Gaia photometric science alerts. HODGKIN S.T., HARRISON D.L., BREEDT E., et al.
2021MNRAS.507.1229P 90               F     1 39 18 Photometric, polarimetric, and spectroscopic studies of the luminous, slow-decaying Type Ib SN 2012au. PANDEY S.B., KUMAR A., KUMAR B., et al.
2022MNRAS.512.2489O 55           X         1 2 17 Magnetorotational core collapse of possible gamma-ray burst progenitors - IV. A wider range of progenitors. OBERGAULINGER M. and ALOY M.A.
2022MNRAS.512.4484F 653           X C F     12 24 4 Close, bright, and boxy: the superluminous SN 2018hti. FIORE A., BENETTI S., NICHOLL M., et al.
2022MNRAS.513.4057S 252       D     X   F     5 32 8 A mid-infrared study of superluminous supernovae. SUN L., XIAO L. and LI G.
2022ApJ...931...32Y 233           X C       4 4 ~ Optical Observations and Modeling of the Superluminous Supernova 2018lfe. YIN Y., GOMEZ S., BERGER E., et al.
2022ApJ...931..153S 19       D               1 84 5 Constraints on the Explosion Timescale of Core-collapse Supernovae Based on Systematic Analysis of Light Curves. SAITO S., TANAKA M., SAWADA R., et al.
2022MNRAS.514.5686P 159       D     X         4 87 9 Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. PRENTICE S.J., MAGUIRE K., SIEBENALER L., et al.
2022ApJ...937...40K 47           X         1 22 4 Ultraviolet Spectroscopy and TARDIS Models of the Broad-lined Type Ic Supernova 2014ad. KWOK L.A., WILLIAMSON M., JHA S.W., et al.
2022MNRAS.517.2056G 93           X         2 30 9 SN 2020wnt: a slow-evolving carbon-rich superluminous supernova with no O II lines and a bumpy light curve. GUTIERREZ C.P., PASTORELLO A., BERSTEN M., et al.
2022ApJ...940...69K 112       D     X         3 32 2 Premaximum Spectroscopic Diversity of Hydrogen-poor Superluminous Supernovae. KONYVES-TOTH R.
2022ApJ...941..107G 47           X         1 238 16 Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. GOMEZ S., BERGER E., NICHOLL M., et al.
2023MNRAS.521.2814K 1000           X C F     18 24 1 The rest-frame ultraviolet of superluminous supernovae - I. Potential as cosmological probes. KHETAN N., COOKE J. and BRANCHESI M.
2023ApJ...949...23Z 350           X C       6 17 2 SN 2017egm: A Helium-rich Superluminous Supernova with Multiple Bumps in the Light Curves. ZHU J., JIANG N., DONG S., et al.
2023ApJ...951...34T 50           X         1 19 3 Supernova 2020wnt: An Atypical Superluminous Supernova with a Hidden Central Engine. TINYANONT S., WOOSLEY S.E., TAGGART K., et al.
2023ApJ...951..134P 100             C       1 15 5 Chandra, HST/STIS, NICER, Swift, and TESS Detail the Flare Evolution of the Repeating Nuclear Transient ASASSN -14ko. PAYNE A.V., AUCHETTL K., SHAPPEE B.J., et al.

goto View the references in ADS


© Université de Strasbourg/CNRS

    • Contact