SN 2015bn , the SIMBAD biblio

SN 2015bn , the SIMBAD biblio (134 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.24CEST06:54:25


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2015ATel.7102....1L 40           X         1 10 6 PESSTO spectroscopic classification of optical transients. LE GUILLOU L., MITRA A., BAUMONT S., et al.
2015ATel.7156....1D 159           X         4 11 2 Palomar spectroscopic classification of CRTS optical transients. DRAKE A.J., STERN D., DJORGOVSKI S.G., et al.
2016ApJ...826...39N 6509 T K A D     X C       161 18 133 SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. NICHOLL M., BERGER E., SMARTT S.J., et al.
2016MNRAS.460L..55M 16       D               1 23 10 Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. MORIYA T.J. and TAURIS T.M.
2016ApJ...828L..18N 996 T K A     X C       23 9 85 Superluminous supernova
SN
2015bn
in the nebular phase: evidence for the engine-powered explosion of a stripped massive star.
NICHOLL M., BERGER E., MARGUTTI R., et al.
2016ApJ...828...94C 125           X         3 4 22 Extreme supernova models for the super-luminous transient ASASSN-15lh. CHATZOPOULOS E., WHEELER J.C., VINKO J., et al.
2016ApJ...831...79I 1674   K A S   X C       40 11 49 Spectropolarimetry of superluminous supernovae: insight into their geometry. INSERRA C., BULLA M., SIM S.A., et al.
2016ApJ...831..144L 43           X         1 14 54 PS1-14bj: a hydrogen-poor superluminous supernova with a long rise and slow decay. LUNNAN R., CHORNOCK R., BERGER E., et al.
2016ATel.8552....1A 203 T         X         4 1 2 VLA search for a radio counterpart to the superluminous supernova
PS15ae.
ALEXANDER K.D., NICHOLL M., BERGER E., et al.
2017ApJ...835L...8N 530           X C F     11 13 38 An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine. NICHOLL M., BERGER E., MARGUTTI R., et al.
2017ApJ...835...13J 2262   K A S   X C       54 22 99 Long-duration superluminous supernovae at late times. JERKSTRAND A., SMARTT S.J., INSERRA C., et al.
2017ApJ...835...58V viz 83           X         2 14 40 On the early-time excess emission in hydrogen-poor superluminous supernovae. VREESWIJK P.M., LELOUDAS G., GAL-YAM A., et al.
2017ApJ...837L..14L 1408 T K A     X C       33 4 14 Time-resolved polarimetry of the superluminous
SN 2015bn with the Nordic Optical Telescope.
LELOUDAS G., MAUND J.R., GAL-YAM A., et al.
2017ApJ...839L...6S 43           X         1 3 7 The magnetar model of the superluminous supernova Gaia16apd and the explosion jet feedback mechanism. SOKER N.
2017MNRAS.466.1428G 531           X         13 11 38 The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh. GODOY-RIVERA D., STANEK K.Z., KOCHANEK C.S., et al.
2017MNRAS.464.2672H viz 16       D               1 171 29 The ASAS-SN bright supernova catalogue - I. 2013-2014. HOLOIEN T.W.-S., STANEK K.Z., KOCHANEK C.S., et al.
2017ApJ...840...12Y 180       D     X         5 38 51 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...840...57Y 123           X         3 22 38 Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. YAN L., QUIMBY R., GAL-YAM A., et al.
2017ApJ...841...14M 69           X         1 10 287 Millisecond magnetar birth connects FRB 121102 to superluminous supernovae and long-duration gamma-ray bursts. METZGER B.D., BERGER E. and MARGALIT B.
2017ApJ...842...26L 382       D     X C       9 26 23 A Monte Carlo approach to magnetar-powered transients. I. Hydrogen-deficient superluminous supernovae. LIU L.-D., WANG S.-Q., WANG L.-J., et al.
2017MNRAS.466.2633S 44           X         1 13 44 Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae. SUZUKI A. and MAEDA K.
2017A&A...602A...9C 82           X         2 25 37 The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. CHEN T.-W., NICHOLL M., SMARTT S.J., et al.
2017MNRAS.468.1226G 41           X         1 26 23 Core collapse supernova remnants with ears. GRICHENER A. and SOKER N.
2017MNRAS.468.4642I 2641   K A D     X C F     64 35 37 Complexity in the light curves and spectra of slow-evolving superluminous supernovae. INSERRA C., NICHOLL M., CHEN T.-W., et al.
2017MNRAS.469.1246K 530           X C       12 13 36 Gaia16apd - a link between fast and slowly declining type I superluminous supernovae. KANGAS T., BLAGORODNOVA N., MATTILA S., et al.
2017ApJ...845L...8N 46           X         1 4 23 The superluminous supernova SN 2017egm in the nearby galaxy NGC 3191: a metal-rich environment can support a typical SLSN evolution. NICHOLL M., BERGER E., MARGUTTI R., et al.
2017ApJ...845...85L viz 139       D     X         4 47 77 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017MNRAS.470..197Y 843     A S   X C F     18 1 6 A possible relation between flare activity in super-luminous supernovae and gamma-ray bursts. YU Y.-W. and LI S.-Z.
2017MNRAS.470.3566C 546   K   D     X   F     13 22 54 Superluminous supernova progenitors have a half-solar metallicity threshold. CHEN T.-W., SMARTT S.J., YATES R.M., et al.
2017ApJ...848....6Y 758     A     X C       18 23 91 Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. YAN L., LUNNAN R., PERLEY D.A., et al.
2017ApJ...850...55N 629       D     X C       15 41 176 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2017ApJ...851L..14W 123           X C       2 5 8 Circumstellar interaction models for the bolometric light curve of Type I superluminous SN 2017egm. WHEELER J.C., CHATZOPOULOS E., VINKO J., et al.
2017ApJ...851...95S 58       D     X         2 24 24 Magnetar-powered superluminous supernovae must first be exploded by jets. SOKER N. and GILKIS A.
2018MNRAS.473.1258S 17       D               3 75 131 Cosmic evolution and metal aversion in superluminous supernova host galaxies. SCHULZE S., KRUHLER T., LELOUDAS G., et al.
2018ApJ...853...57B 825           X C       19 27 66 Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a "normal," massive, metal-rich spiral galaxy. BOSE S., DONG S., PASTORELLO A., et al.
2018MNRAS.474..573O 182       D     X         5 9 16 Radio emission from embryonic superluminous supernova remnants. OMAND C.M.B., KASHIYAMA K. and MURASE K.
2018ApJ...854...37S 41           X         1 13 12 Studying the ultraviolet spectrum of the first spectroscopically confirmed Supernova at redshift two. SMITH M., SULLIVAN M., NICHOL R.C., et al.
2018ApJ...854..175I 99       D       C       2 48 19 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018MNRAS.475.1046I 45           X         1 23 103 On the nature of hydrogen-rich superluminous supernovae. INSERRA C., SMARTT S.J., GALL E.E.E., et al.
2018ApJ...856...56C 594       D     X C F     13 26 32 Jets in hydrogen-poor superluminous supernovae: constraints from a comprehensive analysis of radio observations. COPPEJANS D.L., MARGUTTI R., GUIDORZI C., et al.
2018MNRAS.475.2659M 623   K   S   X C F     12 10 61 The GRB-SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures. MARGALIT B., METZGER B.D., THOMPSON T.A., et al.
2018A&A...611A..45R 123           X         3 47 13 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018ApJ...858..115A 178           X C       3 5 65 Related progenitor models for long-duration gamma-ray bursts and Type Ic superluminous supernovae. AGUILERA-DENA D.R., LANGER N., MORIYA T.J., et al.
2018ApJ...860..100D viz 43           X         1 41 119 Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. DE CIA A., GAL-YAM A., RUBIN A., et al.
2018MNRAS.478..110S 370           X         9 16 6 Broad-band emission properties of central engine-powered supernova ejecta interacting with a circumstellar medium. SUZUKI A. and MAEDA K.
2018ApJ...864...45M viz 841       D S   X C       19 37 58 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018ApJ...864L..36M 82             C       1 16 8 Evidence for a pulsar wind nebula in the Type Ib peculiar supernova SN 2012au. MILISAVLJEVIC D., PATNAUDE D.J., CHEVALIER R.A., et al.
2018ApJ...865....9B 1630     A     X C       39 18 9 The Type I superluminous supernova PS16aqv: lightcurve complexity and deep limits on radioactive ejecta in a fast event. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2018MNRAS.479.4984C 82           X         2 10 1 Testing the magnetar scenario for superluminous supernovae with circular polarimetry. CIKOTA A., LELOUDAS G., BULLA M., et al.
2018MNRAS.480.1393C 41           X         1 4 2 Polarization of MeV gamma-rays and 511 keV line shape as probesof SNIa asymmetry and magnetic field. CHURAZOV E. and KHABIBULLIN I.
2018ApJ...866L..24N 1796 T K A     X C       42 11 12 One thousand days of
SN2015bn: HST imaging shows a light curve flattening consistent with magnetar predictions.
NICHOLL M., BLANCHARD P.K., BERGER E., et al.
2018NatAs...2..887L 1 14 14 A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. LUNNAN R., FRANSSON C., VREESWIJK P.M., et al.
2018ApJ...867..113M 16       D               2 37 11 Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2018ApJ...868L..32B 971 T K A     X C       22 9 7 Where is the engine hiding its missing energy? Constraints from a deep X-ray non-detection of the superluminous
SN 2015bn.
BHIROMBHAKDI K., CHORNOCK R., MARGUTTI R., et al.
2018ApJ...869..166V 58       D     X         2 58 6 Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2018A&A...620A..67A 207           X         5 25 36 A nearby super-luminous supernova with a long pre-maximum & "plateau" and strong C II features. ANDERSON J.P., PESSI P.J., DESSART L., et al.
2019ApJ...871..102N 938       D S   X C       21 20 55 Nebular-phase spectra of superluminous supernovae: physical insights from observational and statistical properties. NICHOLL M., BERGER E., BLANCHARD P.K., et al.
2019MNRAS.482.1545S viz 100       D         F     2 320 54 The Berkeley sample of stripped-envelope supernovae. SHIVVERS I., FILIPPENKO A.V., SILVERMAN J.M., et al.
2019MNRAS.482.4057M 125           X         3 7 ~ RINGO3 polarimetry of the Type I superluminous SN 2017egm. MAUND J.R., STEELE I., JERMAK H., et al.
2019PASP..131a4002H viz 84             C       1 173 56 Carnegie Supernova Project-II: the near-infrared spectroscopy program. HSIAO E.Y., PHILLIPS M.M., MARION G.H., et al.
2019A&A...621A.141D 336           X C       7 16 33 Simulations of light curves and spectra for superluminous Type Ic supernovae powered by magnetars. DESSART L.
2019MNRAS.484.3451M 376   K       X         9 7 2 The nature of PISN candidates: clues from nebular spectra. MAZZALI P.A., MORIYA T.J., TANAKA M., et al.
2019MNRAS.484.5468O 42           X         1 9 5 Dust formation in embryonic pulsar-aided supernova remnants. OMAND C.M.B., KASHIYAMA K. and MURASE K.
2019ApJ...874...68C 42           X         1 32 1 A systematic study of superluminous supernova light-curve models using clustering. CHATZOPOULOS E. and TUMINELLO R.
2019ApJ...876L..10E 89             C       1 8 41 A radio source coincident with the superluminous supernova PTF10hgi: evidence for a central engine and an analog of the repeating FRB 121102? EFTEKHARI T., BERGER E., MARGALIT B., et al.
2019RAA....19...63W 125           X         3 28 3 The Energy Sources of Superluminous Supernovae. WANG S.-Q., WANG L.-J. and DAI Z.-G.
2019ApJ...877...20W 167           X C       3 8 ~ Modeling the light curves of the luminous Type Ic supernova 2007D. WANG S.-Q., CANO Z., LI L., et al.
2019ApJ...881...87G viz 126           X C       2 20 27 SN 2016iet: the pulsational or pair instability explosion of a low-metallicity massive CO core embedded in a dense hydrogen-poor circumstellar medium. GOMEZ S., BERGER E., NICHOLL M., et al.
2019MNRAS.489.3591P viz 167           X C       3 164 31 Anomaly detection in the Open Supernova Catalog. PRUZHINSKAYA M.V., MALANCHEV K.L., KORNILOV M.V., et al.
2020ApJ...892...28K 2341     A D     X C       55 20 ~ SN 2010kd: photometric and spectroscopic analysis of a slow-decaying superluminous supernova. KUMAR A., PANDEY S.B., KONYVES-TOTH R., et al.
2020MNRAS.494..885S 43           X         1 13 ~ The shape of SN 1993J re-analysed. STEVANCE H.F., BAADE D., BRUTEN J.R., et al.
2020ApJ...894..154S 256           X         6 8 14 Late-phase spectropolarimetric observations of superluminous supernova SN 2017egm to probe the geometry of the inner ejecta. SAITO S., TANAKA M., MORIYA T.J., et al.
2020ApJ...897..114B 60       D     X         2 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020MNRAS.497..318L 979           X C F     21 15 ~ SN 2018hti: a nearby superluminous supernova discovered in a metal-poor galaxy. LIN W.L., WANG X.F., LI W.X., et al.
2020ApJ...900...73K viz 85           X         2 11 ~ Comparative spectral analysis of the superluminous supernova 2019neq. KONYVES-TOTH R., THOMAS B.P., VINKO J., et al.
2020ApJ...901...61L viz 384           X C       8 27 32 Four (super)luminous supernovae from the first months of the ZTF survey. LUNNAN R., YAN L., PERLEY D.A., et al.
2020MNRAS.498.3730M 43           X         1 11 ~ Polarimetry of the superluminous transient ASASSN-15lh. MAUND J.R., LELOUDAS G., MALESANI D.B., et al.
2020ApJ...904...74G 17       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2020A&A...643A..47O 17       D               1 93 ~ The interacting nature of dwarf galaxies hosting superluminous supernovae. ORUM S.V., IVENS D.L., STRANDBERG P., et al.
2021MNRAS.500.5142F 17       D               1 113 29 From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory. FROHMAIER C., ANGUS C.R., VINCENZI M., et al.
2021ApJ...909...24K 914     A D     X C       21 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2017ATel10537....1R 41           X         1 2 ~ Stringent radio constraint on the exceptional super-luminous supernova SN2017egm. ROMERO-CANIZALES C., BESWICK R., DONG S., et al.
2021MNRAS.502.1678K 609           X C       13 51 12 SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021MNRAS.502.2120F 392           X C       8 23 16 SN 2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. FIORE A., CHEN T.-W., JERKSTRAND A., et al.
2021ApJ...908..217S 88           X         2 13 14 Two-dimensional radiation-hydrodynamic simulations of supernova ejecta with a central power source. SUZUKI A. and MAEDA K.
2021ApJ...908..249M 131           X C       2 8 ~ Constraints on the rate of supernovae lasting for more than a year from Subaru/Hyper Suprime-Cam. MORIYA T.J., JIANG J.-A., YASUDA N., et al.
2021MNRAS.503..312M 131           X         3 25 ~ RINGO3 polarimetry of very young ZTF supernovae. MAUND J.R., YANG Y., STEELE I.A., et al.
2021MNRAS.504L..51S 87           X         2 7 ~ Binary pathways to SLSNe-I: SN 2017gci. STEVANCE H.F. and ELDRIDGE J.J.
2021ApJ...912...21E 540       D S   X         12 125 18 Late-time radio and millimeter observations of superluminous supernovae and long gamma-ray bursts: implications for central engines, fast radio bursts, and obscured star formation. EFTEKHARI T., MARGALIT B., OMAND C.M.B., et al.
2020ATel14027....1T 85           X         2 4 ~ Spectroscopic classification of 3 transients with Keck and DEIMOS. TERRERAN G., BLANCHARD P.K., BERTON M., et al.
2021ApJ...913..143G viz 261           X C       5 20 17 The luminous and double-peaked Type Ic Supernova 2019stc: evidence for multiple energy sources. GOMEZ S., BERGER E., HOSSEINZADEH G., et al.
2021ApJ...917...77V 874           X C       19 7 27 Gamma-ray thermalization and leakage from millisecond magnetar nebulae: toward a self-consistent model for superluminous supernovae. VURM I. and METZGER B.D.
2021ApJ...917...97W viz 87             C       1 27 3 ASASSN-14ms: the most energetic known explosion of a Type Ibn supernova and its physical origin. WANG X., LIN W., ZHANG J., et al.
2021A&A...653A.119N 44           X         1 19 10 Constraining bright optical counterparts of fast radio bursts. NUNEZ C., TEJOS N., PIGNATA G., et al.
2021MNRAS.507.1229P 627       D     X C F     13 39 18 Photometric, polarimetric, and spectroscopic studies of the luminous, slow-decaying Type Ib SN 2012au. PANDEY S.B., KUMAR A., KUMAR B., et al.
2021MNRAS.508...44M 741     A D S   X C       16 9 10 ALMA and NOEMA constraints on synchrotron nebular emission from embryonic superluminous supernova remnants and radio-gamma-ray connection. MURASE K., OMAND C.M.B., COPPEJANS D.L., et al.
2021MNRAS.508.4342P 261           X C       5 26 6 Transitional events in the spectrophotometric regime between stripped envelope and superluminous supernovae. PRENTICE S.J., INSERRA C., SCHULZE S., et al.
2021ApJ...921...64B 1724     A     X C       39 8 ~ Late-time Hubble Space Telescope observations of a hydrogen-poor superluminous supernova reveal the power-law decline of a magnetar central engine. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2021ApJ...921..180H 44           X         1 23 ~ Magnetar models of superluminous supernovae from the Dark Energy Survey: exploring redshift evolution. HSU B., HOSSEINZADEH G. and BERGER E.
2021ApJ...922...17H 409       D     X C       9 40 2 A VLA survey of late-time radio emission from superluminous supernovae and the host galaxies. HATSUKADE B., TOMINAGA N., MOROKUMA T., et al.
2022MNRAS.511.5948P 1478   K A D     X C       33 22 5 Post maximum light and late time optical imaging polarimetry of type I superluminous supernova 2020znr. POIDEVIN F., OMAND C.M.B., PEREZ-FOURNON I., et al.
2022MNRAS.512.4484F 1227       D     X C F     26 24 4 Close, bright, and boxy: the superluminous SN 2018hti. FIORE A., BENETTI S., NICHOLL M., et al.
2022MNRAS.513.2965H 986           X C F     20 12 ~ Two years of optical and NIR observations of the superluminous supernova UID 30901 discovered by the UltraVISTA SN survey. HUEICHAPAN E.D., CONTRERAS C., CARTIER R., et al.
2022MNRAS.513.4057S 242       D     X   F     5 32 8 A mid-infrared study of superluminous supernovae. SUN L., XIAO L. and LI G.
2022ApJ...931..153S 63       D     X         2 84 5 Constraints on the Explosion Timescale of Core-collapse Supernovae Based on Systematic Analysis of Light Curves. SAITO S., TANAKA M., SAWADA R., et al.
2022MNRAS.513.6210M 746   K A S   X C F     14 4 11 Variable thermal energy injection from magnetar spin-down as a possible cause of stripped-envelope supernova light-curve bumps. MORIYA T.J., MURASE K., KASHIYAMA K., et al.
2022MNRAS.514.2627C 403           X C       8 63 5 A puzzle solved after two decades: SN 2002gh among the brightest of superluminous supernovae. CARTIER R., HAMUY M., CONTRERAS C., et al.
2022MNRAS.514.5686P 152       D     X         4 87 9 Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. PRENTICE S.J., MAGUIRE K., SIEBENALER L., et al.
2022ApJ...933...14H 287       D     X C       6 35 28 Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. HOSSEINZADEH G., BERGER E., METZGER B.D., et al.
2022ApJ...937...13H 45           X         1 4 1 Photometrically Classified Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey: A Case Study for Science with Machine-learning-based Classification. HSU B., HOSSEINZADEH G., VILLAR V.A., et al.
2022MNRAS.517.2056G 2303       D S   X C F     49 30 9 SN 2020wnt: a slow-evolving carbon-rich superluminous supernova with no O II lines and a bumpy light curve. GUTIERREZ C.P., PASTORELLO A., BERSTEN M., et al.
2022MNRAS.517.4544H 162   K A     X         4 5 6 Neutron stars colliding with binary companions: formation of hypervelocity stars, pulsar planets, bumpy superluminous supernovae and Thorne-Żytkow objects. HIRAI R. and PODSIADLOWSKI P.
2022A&A...666A..30P 314           X C       6 43 14 SN 2018bsz: A Type I superluminous supernova with aspherical circumstellar material. PURSIAINEN M., LELOUDAS G., PARASKEVA E., et al.
2022ApJ...940...69K 421       D     X         10 32 2 Premaximum Spectroscopic Diversity of Hydrogen-poor Superluminous Supernovae. KONYVES-TOTH R.
2022ApJ...941..107G 45           X         1 238 16 Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. GOMEZ S., BERGER E., NICHOLL M., et al.
2023ApJ...943...42C 47           X         1 55 22 The Hydrogen-poor Superluminous Supernovae from the Zwicky Transient Facility Phase I Survey. II. Light-curve Modeling and Characterization of Undulations. CHEN Z.H., YAN L., KANGAS T., et al.
2023A&A...670A...7W 308     A     X C       6 16 6 SN 2020qlb: A hydrogen-poor superluminous supernova with well-characterized light curve undulations. WEST S.L., LUNNAN R., OMAND C.M.B., et al.
2023ApJ...945...30A 2099 T   A D     X C       44 13 ~ VERITAS and Fermi-LAT Constraints on the Gamma-Ray Emission from Superluminous Supernovae
SN2015bn and SN2017egm.
ACHARYYA A., ADAMS C.B., BANGALE P., et al.
2023MNRAS.521.2814K 345       D     X   F     7 24 1 The rest-frame ultraviolet of superluminous supernovae - I. Potential as cosmological probes. KHETAN N., COOKE J. and BRANCHESI M.
2023MNRAS.521.5418P 2099   K A D     X C F     44 21 3 Optical polarization and spectral properties of the hydrogen-poor superluminous supernovae SN 2021bnw and SN 2021fpl. POIDEVIN F., OMAND C.M.B., KONYVES-TOTH R., et al.
2023ApJ...949...23Z 560           X C       11 17 2 SN 2017egm: A Helium-rich Superluminous Supernova with Multiple Bumps in the Light Curves. ZHU J., JIANG N., DONG S., et al.
2023A&A...673A.107O 140           X         3 14 6 Toward nebular spectral modeling of magnetar-powered supernovae. OMAND C.M.B. and JERKSTRAND A.
2023A&A...674A..81P 765       D     X C       16 20 5 Polarimetry of hydrogen-poor superluminous supernovae. PURSIAINEN M., LELOUDAS G., CIKOTA A., et al.
2023ApJ...951...34T 280           X         6 19 3 Supernova 2020wnt: An Atypical Superluminous Supernova with a Hidden Central Engine. TINYANONT S., WOOSLEY S.E., TAGGART K., et al.
2023ApJ...951...61D 140           X C       2 12 ~ Magnetar Flare-driven Bumpy Declining Light Curves in Hydrogen-poor Superluminous Supernovae. DONG X.-F., LIU L.-D., GAO H., et al.
2023NatAs...7..779L 140           X C       2 16 ~ A superluminous supernova lightened by collisions with pulsational pair-instability shells. LIN W., WANG X., YAN L., et al.
2023A&A...675A..83H 140           X C       2 38 ~ The Carnegie Supernova Project I Spectroscopic analysis of stripped-envelope supernovae. HOLMBO S., STRITZINGER M.D., KARAMEHMETOGLU E., et al.
2023ApJ...954...44K 1138       D     X C       24 29 ~ Type W and Type 15bn Subgroups of Hydrogen-poor Superluminous Supernovae: Premaximum Diversity, Postmaximum Homogeneity? KONYVES-TOTH R. and SELI B.
2023A&A...677A..28P viz 373           X C       7 87 ~ A characterization of ASAS-SN core-collapse supernova environments with VLT+MUSE I. Sample selection, analysis of local environments, and correlations with light curve properties. PESSI T., PRIETO J.L., ANDERSON J.P., et al.
2023ApJ...956L..31M 93           X         2 20 ~ SN 2022jli: A Type Ic Supernova with Periodic Modulation of Its Light Curve and an Unusually Long Rise. MOORE T., SMARTT S.J., NICHOLL M., et al.
2023ApJS..269...40Y 420       S   X C       7 10 ~ HAFFET: Hybrid Analytic Flux FittEr for Transients. YANG S. and SOLLERMAN J.
2023MNRAS.526.1822K 112       D         F     2 31 ~ Reduction of supernova light curves by vector Gaussian processes. KORNILOV M.V., SEMENIKHIN T.A. and PRUZHINSKAYA M.V.
2024ApJ...961..169H 420       D     X C       8 110 ~ An Extensive Hubble Space Telescope Study of the Offset and Host Light Distributions of Type I Superluminous Supernovae. HSU B., BLANCHARD P.K., BERGER E., et al.
2024A&A...683A.223S viz 2070       D S   X C F     39 28 ~ 1100 days in the life of the supernova 2018ibb The best pair-instability supernova candidate, to date. SCHULZE S., FRANSSON C., KOZYREVA A., et al.

goto View the references in ADSLimited to 100