SN 2013hy , the SIMBAD biblio

SN 2013hy , the SIMBAD biblio (34 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.19CEST09:10:53


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2015MNRAS.449.1215P 3161 T K A S   X C       77 25 41
DES13S2cmm: the first superluminous supernova from the Dark Energy Survey.
PAPADOPOULOS A., D'ANDREA C.B., SULLIVAN M., et al.
2015ApJ...809..142O 779 T K A S   X C       17 1 3 The superluminous SN
DES13S2cmm as a signature of a quark-nova in a He-HMXB system.
OUYED R., LEAHY D. and KONING N.
2013ATel.5603....1P 156 T         X         3 2 1 Spectroscopic Confirmation of DES 13S2cmm: The first DES Superluminous Supernova. PAPADOPOULOS A., SULLIVAN M., D'ANDREA C., et al.
2016ApJ...818L...8S 47           X         1 7 51 DES14X3taz: a Type I superluminous supernova showing a luminous, rapidly cooling initial pre-peak bump. SMITH M., SULLIVAN M., D'ANDREA C.B., et al.
2016ApJ...818...77O 64     A     X         2 10 7 Quark-novae occurring in massive binaries : a universal energy source in superluminous supernovae with double-peaked light curves. OUYED R., LEAHY D. and KONING N.
2016MNRAS.460L..55M 16       D               1 23 10 Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. MORIYA T.J. and TAURIS T.M.
2016MNRAS.460.1270D 254           X C       5 47 645 The Dark Energy Survey: more than dark energy - an overview. DARK ENERGY SURVEY COLLABORATION, ABBOTT T., ABDALLA F.B., et al.
2017MNRAS.464.3568P 98       D     X         3 25 46 The volumetric rate of superluminous supernovae at z ∼ 1. PRAJS S., SULLIVAN M., SMITH M., et al.
2017ApJ...840...12Y 17       D               3 38 51 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...842...26L 301       D     X C       7 26 23 A Monte Carlo approach to magnetar-powered transients. I. Hydrogen-deficient superluminous supernovae. LIU L.-D., WANG S.-Q., WANG L.-J., et al.
2017MNRAS.468.4642I 42           X         1 35 37 Complexity in the light curves and spectra of slow-evolving superluminous supernovae. INSERRA C., NICHOLL M., CHEN T.-W., et al.
2017ApJ...845...85L viz 82             C       3 47 77 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017ApJ...850...55N 20       D               2 41 176 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2017ApJ...851...95S 17       D               1 24 24 Magnetar-powered superluminous supernovae must first be exploded by jets. SOKER N. and GILKIS A.
2018MNRAS.473.1258S 17       D               3 75 131 Cosmic evolution and metal aversion in superluminous supernova host galaxies. SCHULZE S., KRUHLER T., LELOUDAS G., et al.
2018ApJ...854..175I 305       D     X C       7 48 19 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018A&A...611A..45R 123           X         3 47 13 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018ApJ...867..113M 16       D               2 37 11 Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2018ApJ...869..166V 16       D               1 58 6 Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2019ApJ...872...90B 84           X         2 18 4 A hydrogen-poor superluminous supernova with enhanced iron-group absorption: a new link between SLSNe and broad-lined Type Ic SNe. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2019A&A...624A.143K 43           X         1 64 71 Highly luminous supernovae associated with gamma-ray bursts. I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae. KANN D.A., SCHADY P., OLIVARES F.E., et al.
2019MNRAS.487.2215A 980       D     X   F     23 26 67 Superluminous supernovae from the Dark Energy Survey. ANGUS C.R., SMITH M., SULLIVAN M., et al.
2020MNRAS.495.4040W viz 17       D               2 614 35 Supernova host galaxies in the dark energy survey: I. Deep coadds, photometry, and stellar masses. WISEMAN P., SMITH M., CHILDRESS M., et al.
2020ApJ...897..114B 17       D               1 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020ApJ...904...74G 145       D     X C       3 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2020A&A...643A..47O 17       D               1 93 ~ The interacting nature of dwarf galaxies hosting superluminous supernovae. ORUM S.V., IVENS D.L., STRANDBERG P., et al.
2021ApJ...909...24K 17       D               1 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021ApJ...921..180H 17       D               2 23 ~ Magnetar models of superluminous supernovae from the Dark Energy Survey: exploring redshift evolution. HSU B., HOSSEINZADEH G. and BERGER E.
2022ApJ...931..153S 63       D     X         2 84 5 Constraints on the Explosion Timescale of Core-collapse Supernovae Based on Systematic Analysis of Light Curves. SAITO S., TANAKA M., SAWADA R., et al.
2022MNRAS.514.2627C 18       D               1 63 5 A puzzle solved after two decades: SN 2002gh among the brightest of superluminous supernovae. CARTIER R., HAMUY M., CONTRERAS C., et al.
2022ApJ...935..108S 18       D               1 41 9 Powering Luminous Core Collapse Supernovae with Jets. SOKER N.
2022ApJ...941..107G 332       D     X         8 238 16 Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. GOMEZ S., BERGER E., NICHOLL M., et al.
2023MNRAS.526.1822K 112       D         F     2 31 ~ Reduction of supernova light curves by vector Gaussian processes. KORNILOV M.V., SEMENIKHIN T.A. and PRUZHINSKAYA M.V.
2024ApJ...961..169H 120       D       C       3 110 ~ An Extensive Hubble Space Telescope Study of the Offset and Host Light Distributions of Type I Superluminous Supernovae. HSU B., BLANCHARD P.K., BERGER E., et al.

goto View the references in ADS