SN 2013fs , the SIMBAD biblio

SN 2013fs , the SIMBAD biblio (85 results) C.D.S. - SIMBAD4 rel 1.8 - 2022.08.07CEST17:25:15


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2015MNRAS.448.2608V viz 17       D               1 21 34 Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop. VALENTI S., SAND D., STRITZINGER M., et al.
2013ATel.5455....1C 40           X         1 5 2 Spectroscopic Classification of 3 Supernovae with WiFeS. CHILDRESS M., SCALZO R., YUAN F., et al.
2013ATel.5527....1C 159 T         X         3 2 2
SN 2013fs now resembles a SN IIP.
CHILDRESS M., SCALZO R., YUAN F., et al.
2016ApJ...818....3K 100       D       C       2 24 40 Flash spectroscopy: emission lines from the ionized circumstellar material around <10-day-old Type II supernovae. KHAZOV D., YARON O., GAL-YAM A., et al.
2016MNRAS.456.2848H viz 16       D               1 919 27 Supernovae and their host galaxies - III. The impact of bars and bulges on the radial distribution of supernovae in disc galaxies. HAKOBYAN A.A., KARAPETYAN A.G., BARKHUDARYAN L.V., et al.
2016ApJ...820...33R viz 222       D     X C       5 70 36 Type II supernova energetics and comparison of light curves to shock-cooling models. RUBIN A., GAL-YAM A., DE CIA A., et al.
2016ApJ...820...74D 593       D S   X         14 24 4 Characterizing mid-ultraviolet to optical light curves of nearby Type IIn supernovae. DE LA ROSA J., ROMING P., PRITCHARD T., et al.
2016A&A...587L...7T viz 16       D               2 78 6 Metallicity from Type II supernovae from the (i)PTF. TADDIA F., MOQUIST P., SOLLERMAN J., et al.
2016MNRAS.459.3939V viz 922   K   D     X C F     21 210 71 The diversity of Type II supernova versus the similarity in their progenitors. VALENTI S., HOWELL D.A., STRITZINGER M.D., et al.
2017ApJ...838...28M 983   K   D S   X C       22 6 35 Unifying Type II supernova light curves with dense circumstellar material. MOROZOVA V., PIRO A.L. and VALENTI S.
2017ApJ...841..127M 309       D     X C       7 26 15 The nickel mass distribution of normal Type II supernovae. MULLER T., PRIETO J.L., PEJCHA O., et al.
2017MNRAS.470.1642F 44           X         1 14 28 Pre-supernova outbursts via wave heating in massive stars - I. Red supergiants. FULLER J.
2017MNRAS.469L.108M 1330   K A S   X C       30 2 18 Immediate dense circumstellar environment of supernova progenitors caused by wind acceleration: its effect on supernova light curves. MORIYA T.J., YOON S.-C., GRAFENER G., et al.
2017ApJ...848....5B 42           X         1 20 ~ The transition of a Type IIL supernova into a supernova remnant: late-time observations of SN 2013by. BLACK C.S., MILISAVLJEVIC D., MARGUTTI R., et al.
2017ApJ...848....6Y 43           X         1 23 26 Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. YAN L., LUNNAN R., PERLEY D.A., et al.
2017ApJ...848....8R 85           X         2 5 6 Exploring the efficacy and limitations of shock-cooling models: new analysis of Type II supernovae observed by the Kepler mission. RUBIN A. and GAL-YAM A.
2017A&A...605A..83D 962           X C       22 10 14 Explosion of red-supergiant stars: Influence of the atmospheric structure on shock breakout and early-time supernova radiation. DESSART L., HILLIER D.J. and AUDIT E.
2017MNRAS.472.5004U 42           X         1 15 5 Luminous Type IIP SN 2013ej with high-velocity 56Ni ejecta. UTROBIN V.P. and CHUGAI N.N.
2018PASP..130c4202A 85             C       1 52 2 IPTF survey for cool transients. ADAMS S.M., BLAGORODNOVA N., KASLIWAL M.M., et al.
2018MNRAS.476.1497B 4555 T K A D S   X C F     104 31 1
SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae.
BULLIVANT C., SMITH N., WILLIAMS G.G., et al.
2018MNRAS.476.2840M 383           X         9 4 1 Type IIP supernova light curves affected by the acceleration of red supergiant winds. MORIYA T.J., FORSTER F., YOON S.-C., et al.
2018ApJ...858...15M 128           X         3 23 7 Measuring the progenitor masses and dense circumstellar material of Type II supernovae. MOROZOVA V., PIRO A.L. and VALENTI S.
2018Natur.554..497B 9 6 A surge of light at the birth of a supernova. BERSTEN M.C., FOLATELLI G., GARCIA F., et al.
2018ApJ...859...78N 128           X         3 22 1 The low-luminosity Type IIP Supernova 2016bkv with early-phase circumstellar interaction. NAKAOKA T., KAWABATA K.S., MAEDA K., et al.
2018ApJ...861...63H viz 128           X         3 14 3 Short-lived circumstellar interaction in the low-luminosity Type IIP SN 2016bkv. HOSSEINZADEH G., VALENTI S., McCULLY C., et al.
2018MNRAS.478.3776D 426           X C       9 13 ~ SN 2016esw: a luminous Type II supernova observed within the first day after the explosion. DE JAEGER T., GALBANY L., GUTIERREZ C.P., et al.
2018A&A...617A.115B 43           X         1 30 4 Catching a star before explosion: the luminous blue variable progenitor of SN 2015bh. BOIAN I. and GROH J.H.
2018A&A...617A.137F 85           X         2 129 1 An ALMA 3 mm continuum census of Westerlund 1. FENECH D.M., CLARK J.S., PRINJA R.K., et al.
2018NatAs...2..808F 32 ~ The delay of shock breakout due to circumstellar material evident in most type II supernovae. FORSTER F., MORIYA T.J., MAUREIRA J.C., et al.
2018Sci...362..201D viz 34 ~ A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary. DE K., KASLIWAL M.M., OFEK E.O., et al.
2018ApJ...867....4M 255           X         6 6 1 Theoretical X-ray light curves of young SNe. II. The example of SN 2013ej. MOROZOVA V. and STONE J.M.
2018MNRAS.480.1696J 43           X         1 18 3 The quiescent progenitors of four Type II-P/L supernovae. JOHNSON S.A., KOCHANEK C.S. and ADAMS S.M.
2019MNRAS.483..887D 174           X         4 8 ~ The surface abundances of red supergiants at core collapse. DAVIES B. and DESSART L.
2019A&A...621A.109B viz 87           X         2 10 ~ Diversity of supernovae and impostors shortly after explosion. BOIAN I. and GROH J.H.
2019MNRAS.483.3762K 1071   K A     X C       24 6 ~ The physics of flash (supernova) spectroscopy. KOCHANEK C.S.
2019A&A...621A.141D 44           X         1 16 ~ Simulations of light curves and spectra for superluminous Type Ic supernovae powered by magnetars. DESSART L.
2019ApJ...872..157W 174           X         4 1 ~ Transient high-energy gamma-rays and neutrinos from nearby Type II supernovae. WANG K., HUANG T.-Q. and LI Z.
2019ApJ...873..127T 44           X         1 28 ~ Supernova 2017eaw: molecule and dust formation from infrared observations. TINYANONT S., KASLIWAL M.M., KRAFTON K., et al.
2019ApJ...874...80M 44           X         1 5 ~ High-energy emission from interacting supernovae: new constraints on cosmic-ray acceleration in dense circumstellar environments. MURASE K., FRANCKOWIAK A., MAEDA K., et al.
2019MNRAS.485.1990R 305           X C       6 20 ~ Probing the final-stage progenitor evolution for Type IIP Supernova 2017eaw in NGC 6946. RUI L., WANG X., MO J., et al.
2019ApJ...876...19S 409       D     X         10 22 ~ The Type II-P supernova 2017eaw: from explosion to the nebular phase. SZALAI T., VINKO J., KONYVES-TOTH R., et al.
2019MNRAS.485.5120B 87           X         2 20 ~ Signatures of circumstellar interaction in the Type IIL supernova ASASSN-15oz. BOSTROEM K.A., VALENTI S., HORESH A., et al.
2019ApJ...881...22A viz 87             C       2 19 ~ KSP-SN-2016kf: a long-rising H-rich Type II supernova with unusually high 56Ni mass discovered in the KMTNet Supernova Program. AFSARIARDCHI N., MOON D.-S., DROUT M.R., et al.
2019MNRAS.488.4239P 192   K   D     X         5 106 ~ Comparison of the optical light curves of hydrogen-rich and hydrogen-poor type II supernovae. PESSI P.J., FOLATELLI G., ANDERSON J.P., et al.
2019MNRAS.489..641M 17       D               1 42 ~ A comparison of explosion energies for simulated and observed core-collapse supernovae. MURPHY J.W., MABANTA Q. and DOLENCE J.C.
2019ApJ...885...13T 44           X         1 20 ~ A rapidly declining transient discovered with the Subaru/Hyper Suprime-Cam. TOMINAGA N., MOROKUMA T., TANAKA M., et al.
2019ApJ...885...41M 87           X         2 3 ~ Radio emission from supernovae in the very early phase: implications for the dynamical mass loss of massive stars. MATSUOKA T., MAEDA K., LEE S.-H., et al.
2019ApJ...885...43A viz 479           X C       10 36 ~ SN 2017gmr: an energetic Type II-P supernova with asymmetries. ANDREWS J.E., SAND D.J., VALENTI S., et al.
2019A&A...631A...8H 44           X         1 19 ~ Photometric and spectroscopic diversity of Type II supernovae. HILLIER D.J. and DESSART L.
2019MNRAS.489.5802V 17       D               1 72 ~ Spectrophotometric templates for core-collapse supernovae and their application in simulations of time-domain surveys. VINCENZI M., SULLIVAN M., FIRTH R.E., et al.
2019ApJ...886...27W viz 87           X         2 178 ~ Type IIP supernova progenitors and their explodability. I. Convective overshoot, blue loops, and surface composition. WAGLE G.A., RAY A., DEV A., et al.
2019ApJ...887....4D 17       D               4 73 ~ Carnegie Supernova Project-II: near-infrared spectroscopic diversity of Type II supernovae. DAVIS S., HSIAO E.Y., ASHALL C., et al.
2019ApJ...887..169H viz 44           X         1 23 ~ Evidence for late-stage eruptive mass loss in the progenitor to SN2018gep, a broad-lined IC supernova: pre-explosion emission and a rapidly rising luminous transient. HO A.Y.Q., GOLDSTEIN D.A., SCHULZE S., et al.
2020MNRAS.491.6000S 90           X         2 37 ~ Origins of Type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions. SUN N.-C., MAUND J.R., HIRAI R., et al.
2020ApJ...890..177K 45           X         1 19 ~ A new method to classify Type IIP/IIL supernovae based on their spectra. KOU S., CHEN X. and LIU X.
2020ApJ...891L..32M 134           X C       2 3 ~ The influence of late-stage nuclear burning on red supergiant supernova light curves. MOROZOVA V., PIRO A.L., FULLER J., et al.
2020MNRAS.494L..86C 654 T K A     X         14 6 ~ The explosion energy of the type IIP supernova
SN 2013fs with a confined dense circumstellar shell.
CHUGAI N.N.
2020MNRAS.496.1325B 869       D     X C       19 35 ~ Progenitors of early-time interacting supernovae. BOIAN I. and GROH J.H.
2020MNRAS.498...84Z 627           X C       13 19 ~ SN 2018zd: an unusual stellar explosion as part of the diverse Type II Supernova landscape. ZHANG J., WANG X., JOZSEF V., et al.
2020A&A...641A.177M viz 18       D               1 288 ~ Stripped-envelope core-collapse supernova 56Ni masses. Persistently larger values than supernovae type II. MEZA N. and ANDERSON J.P.
2020ApJ...902....6S viz 672           X C       14 6 ~ SN 2018fif: the explosion of a large red supergiant discovered in its infancy by the Zwicky Transient Facility. SOUMAGNAC M.T., GANOT N., IRANI I., et al.
2020MNRAS.499.1450P 90               F     1 24 ~ SN 2018gjx reveals that some SNe Ibn are SNe IIb exploding in dense circumstellar material. PRENTICE S.J., MAGUIRE K., BOIAN I., et al.
2020A&A...642A.214K 90           X         2 21 ~ Supernova explosions interacting with aspherical circumstellar material: implications for light curves, spectral line profiles, and polarization. KURFURST P., PEJCHA O. and KRTICKA J.
2021ApJ...906....1S 140           X         3 9 ~ A pre-explosion extended effervescent zone around core-collapse supernova progenitors. SOKER N.
2021ApJ...908...75B 19       D               1 556 ~ The radio luminosity-risetime function of core-collapse supernovae. BIETENHOLZ M.F., BARTEL N., ARGO M., et al.
2021MNRAS.503..797K 140           X C       2 12 ~ Synthetic observables for electron-capture supernovae and low-mass core collapse supernovae. KOZYREVA A., BAKLANOV P., JONES S., et al.
2021ApJ...912...46B 140           X         3 16 ~ A large fraction of hydrogen-rich supernova progenitors experience elevated mass loss shortly prior to explosion. BRUCH R.J., GAL-YAM A., SCHULZE S., et al.
2021MNRAS.504.2014C 140   K       X         3 4 ~ Confined massive circumstellar shell in type IIL SN 2008fq. CHUGAI N.N.
2021ApJ...913...55H 187           X C       3 15 ~ Luminous Type II short-plateau supernovae 2006Y, 2006ai, and 2016egz: a transitional class from stripped massive red supergiants. HIRAMATSU D., HOWELL D.A., MORIYA T.J., et al.
2021MNRAS.505..116U 187           X         4 16 ~ Enormous explosion energy of Type IIP SN 2017gmr with bipolar 56Ni ejecta. UTROBIN V.P., CHUGAI N.N., ANDREWS J.E., et al.
2021MNRAS.505.4890L 746           X C F     14 12 ~ SN 2015bf: A fast declining type II supernova with flash-ionized signatures. LIN H., WANG X., ZHANG J., et al.
2021A&A...651A..10D 47           X         1 10 ~ Polarization signatures of a high-velocity scatterer in nebular-phase spectra of Type II supernovae. DESSART L., HILLIER D.J. and LEONARD D.C.
2021MNRAS.506.4715R 93           X         2 92 ~ A systematic reclassification of Type IIn supernovae. RANSOME C.L., HABERGHAM-MAWSON S.M., DARNLEY M.J., et al.
2021NatAs...5..903H 140           X C       2 19 ~ The electron-capture origin of supernova 2018zd. HIRAMATSU D., HOWELL D.A., VAN DYK S.D., et al.
2021MNRAS.507.3726D 93           X         2 13 ~ The origins of low-luminosity supernovae: the case of SN 2016bkv. DECKERS M., GROH J.H., BOIAN I., et al.
2022ApJ...924...15J 350           X         7 30 ~ Final moments. I. Precursor emission, envelope inflation, and enhanced mass loss preceding the luminous Type II Supernova 2020tlf. JACOBSON-GALAN W.V., DESSART L., JONES D.O., et al.
2022MNRAS.510.3276P 100           X         2 3 ~ Supernovae in colliding-wind binaries: observational signatures in the first year. PEJCHA O., CALDERON D. and KURFURST P.
2022ApJ...926...20T 1000           X C       19 16 ~ The Early Phases of Supernova 2020pni: Shock Ionization of the Nitrogen-enriched Circumstellar Material. TERRERAN G., JACOBSON-GALAN W.V., GROH J.H., et al.
2022ApJ...927...10I 50           X         1 34 ~ Less Than 1% of Core-collapse Supernovae in the Local Universe Occur in Elliptical Galaxies. IRANI I., PRENTICE S.J., SCHULZE S., et al.
2022ApJ...928..122M 300           X C       5 5 ~ Optical to X-Ray Signatures of Dense Circumstellar Interaction in Core-collapse Supernovae. MARGALIT B., QUATAERT E. and HO A.Y.Q.
2022A&A...660L...9D 200           X         4 8 ~ Modeling the signatures of interaction in Type II supernovae: UV emission, high-velocity features, broad-boxy profiles. DESSART L. and HILLIER D.J.
2022A&A...660A..40M 50           X         1 147 ~ Type II supernovae from the Carnegie Supernova Project-I. I. Bolometric light curves of 74 SNe II using uBgVriYJH photometry. MARTINEZ L., BERSTEN M.C., ANDERSON J.P., et al.
2022ApJ...930...31B 270       D     X C       5 90 ~ Characterization of Supernovae Based on the Spectral-Temporal Energy Distribution: Two Possible SN Ib Subtypes. BENGYAT O. and GAL-YAM A.
2022ApJ...930...34T 200           X         4 23 ~ SN 2020jfo: A Short-plateau Type II Supernova from a Low-mass Progenitor. TEJA R.S., SINGH A., SAHU D.K., et al.
2022ApJ...930..119W 50           X         1 14 ~ Wave-driven Outbursts and Variability of Low-mass Supernova Progenitors. WU S.C. and FULLER J.

goto View the references in ADS


2022.08.07-17:25:15

© Université de Strasbourg/CNRS

    • Contact