SN 2012ec , the SIMBAD biblio

SN 2012ec , the SIMBAD biblio (73 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.18CEST11:35:25


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2013MNRAS.431L.102M 1233 T   A     X C       30 12 27
Supernova 2012ec: identification of the progenitor and early monitoring with PESSTO.
MAUND J.R., FRASER M., SMARTT S.J., et al.
2013MNRAS.436.3224P 172       D     X   F     4 26 30 An emerging coherent picture of red supergiant supernova explosions. POZNANSKI D.
2014ApJ...787..139D 40           X         1 22 78 The Type IIP supernova 2012aw in M95: hydrodynamical modeling of the photospheric phase from accurate spectrophotometric monitoring. DALL'ORA M., BOTTICELLA M.T., PUMO M.L., et al.
2014MNRAS.440.1917D 16       D               1 32 57 On the lack of X-ray bright Type IIP supernovae. DWARKADAS V.V.
2015MNRAS.448.2312B 4726 T K A D     X C       118 21 9
SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase.
BARBARINO C., DALL'ORA M., BOTTICELLA M.T., et al.
2015MNRAS.448.2482J 1748 T K A D     X C       43 18 27 Supersolar Ni/Fe production in the Type IIP
SN 2012ec.
JERKSTRAND A., SMARTT S.J., SOLLERMAN J., et al.
2012ATel.4306....1C 116 T         X         2 2 ~
PSN J02455988-0734270 in NGC 1084 is a young type II-P SN.
CHILDRESS M., SCALZO R., YUAN F., et al.
2012ATel.4307....1P 39           X         1 3 1 Nearby Supernova Factory II spectroscopic confirmations of three Supernovae. PECONTAL E., BUTON C., FEINDT U., et al.
2015A&A...579A..40S viz 161             C F     2 49 256 PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. SMARTT S.J., VALENTI S., FRASER M., et al.
2015ApJ...807..110J 1471   K A D     X         38 6 21 Constraints on explosive silicon burning in core-collapse supernovae from measured Ni/Fe ratios. JERKSTRAND A., TIMMES F.X., MAGKOTSIOS G., et al.
2016AJ....151...33G viz 16       D               1 168 81 UBVRIz light curves of 51 Type II supernovae. GALBANY L., HAMUY M., PHILLIPS M.M., et al.
2016ApJ...818..123B 49           X         1 18 176 The development of explosions in axisymmetric ab initio core-collapse supernova simulations of 12-25 M stars. BRUENN S.W., LENTZ E.J., HIX W.R., et al.
2016MNRAS.456.2848H viz 16       D               1 919 37 Supernovae and their host galaxies - III. The impact of bars and bulges on the radial distribution of supernovae in disc galaxies. HAKOBYAN A.A., KARAPETYAN A.G., BARKHUDARYAN L.V., et al.
2016ApJ...820...33R viz 16       D               1 70 56 Type II supernova energetics and comparison of light curves to shock-cooling models. RUBIN A., GAL-YAM A., DE CIA A., et al.
2016ApJ...823..127N 17       D               1 25 27 The importance of 56Ni in shaping the light curves of type II supernovae. NAKAR E., POZNANSKI D. and KATZ B.
2016MNRAS.459.3939V viz 178       D       C F     5 210 225 The diversity of Type II supernova versus the similarity in their progenitors. VALENTI S., HOWELL D.A., STRITZINGER M.D., et al.
2016MNRAS.462..137T 203           X         5 14 29 The multifaceted Type II-L supernova 2014G from pre-maximum to nebular phase. TERRERAN G., JERKSTRAND A., BENETTI S., et al.
2016MNRAS.463.1269B 202           X         5 29 55 The evolution of red supergiants to supernova in NGC 2100. BEASOR E.R. and DAVIES B.
2017ApJ...841..127M 263       D     X C       6 26 80 The nickel mass distribution of normal Type II supernovae. MULLER T., PRIETO J.L., PEJCHA O., et al.
2017MNRAS.467..369S 1397       D     X         35 79 11 After the fall: late-time spectroscopy of Type IIP supernovae. SILVERMAN J.M., PICKETT S., WHEELER J.C., et al.
2017MNRAS.469.2202M 422       D S   X C       9 30 28 The resolved stellar populations around 12 Type IIP supernovae. MAUND J.R.
2018MNRAS.473..513F 510       D     X C F     11 29 10 The evolution of temperature and bolometric luminosity in Type II supernovae. FARAN T., NAKAR E. and POZNANSKI D.
2018MNRAS.474.2116D 182       D     X         5 58 97 The initial masses of the red supergiant progenitors to Type II supernovae. DAVIES B. and BEASOR E.R.
2018MNRAS.475.1937T 123           X C       2 27 11 SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events. TOMASELLA L., CAPPELLARO E., PUMO M.L., et al.
2018MNRAS.475.3959H 58       D     X         2 26 18 SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant. HUANG F., WANG X.-F., HOSSEINZADEH G., et al.
2018ApJ...858...15M 103       D     X         3 23 111 Measuring the progenitor masses and dense circumstellar material of Type II supernovae. MOROZOVA V., PIRO A.L. and VALENTI S.
2018A&A...613A..35K 16       D               3 171 55 Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy. KUNCARAYAKTI H., ANDERSON J.P., GALBANY L., et al.
2018MNRAS.473.3863L 99       D         F     3 83 13 Progenitors of low-luminosity Type II-Plateau supernovae. LISAKOV S.M., DESSART L., HILLIER D.J., et al.
2018MNRAS.479.2421D 82           X         2 48 10 SN 2015ba: a Type IIP supernova with a long plateau. DASTIDAR R., MISRA K., HOSSEINZADEH G., et al.
2018MNRAS.480.2475S 99       D       C       3 58 8 ASASSN-14dq: a fast-declining Type II-P supernova in a low-luminosity host galaxy. SINGH A., SRIVASTAV S., KUMAR B., et al.
2018MNRAS.481..566K viz 16       D               1 365 4 The impact of spiral density waves on the distribution of supernovae. KARAPETYAN A.G., HAKOBYAN A.A., BARKHUDARYAN L.V., et al.
2018MNRAS.481.2536K 41           X         1 20 14 The dusty progenitor star of the Type II supernova 2017eaw. KILPATRICK C.D. and FOLEY R.J.
2019ApJ...870....1E viz 21       D               1 13 60 PUSHing core-collapse supernovae to explosions in spherical symmetry. II. Explodability and remnant properties. EBINGER K., CURTIS S., FROHLICH C., et al.
2019ApJ...870....2C viz 51           X         1 7 67 PUSHing core-collapse supernovae to explosions in spherical symmetry. III. Nucleosynthesis yields. CURTIS S., EBINGER K., FROHLICH C., et al.
2019ApJ...870L..16S 17       D               1 39 ~ Bright Type IIP supernovae in (low-metallicity) galaxies. SCOTT S., NICHOLL M., BLANCHARD P., et al.
2019MNRAS.483.5459R viz 59       D     X         2 66 5 Type II supernovae as distance indicators at near-IR wavelengths. RODRIGUEZ O., PIGNATA G., HAMUY M., et al.
2019ApJ...881..158S 334     A D     X         9 14 ~ The initial mass-final luminosity relation of Type II supernova progenitors: hints of new physics? STRANIERO O., DOMINGUEZ I., PIERSANTI L., et al.
2019ApJ...882...68S 17       D               1 27 ~ Observational signature of circumstellar interaction and 56Ni-mixing in the Type II Supernova 2016gfy. SINGH A., KUMAR B., MORIYA T.J., et al.
2019MNRAS.489..641M 17       D               1 42 ~ A comparison of explosion energies for simulated and observed core-collapse supernovae. MURPHY J.W., MABANTA Q. and DOLENCE J.C.
2019A&A...629A.124M 125     A D S   X C       2 15 ~ Mass discrepancy analysis for a select sample of Type II-Plateau supernovae. MARTINEZ L. and BERSTEN M.C.
2019ApJ...885...43A viz 42           X         1 36 30 SN 2017gmr: an energetic Type II-P supernova with asymmetries. ANDREWS J.E., SAND D.J., VALENTI S., et al.
2019MNRAS.490.2799D 351       D     X C F     7 109 41 The Berkeley sample of Type II supernovae: BVRI light curves and spectroscopy of 55 SNe II. DE JAEGER T., ZHENG W., STAHL B.E., et al.
2019MNRAS.490.4515S 602       D     X   F     14 24 ~ The 50-100 pc scale parent stellar populations of Type II supernovae and limitations of single star evolution models. SCHADY P., ELDRIDGE J.J., ANDERSON J., et al.
2020MNRAS.494L..53F 17       D               1 19 ~ The uncertain masses of progenitors of core-collapse supernovae and direct-collapse black holes. FARRELL E.J., GROH J.H., MEYNET G., et al.
2020MNRAS.497..361M 656       D     X   F     15 44 ~ The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio. MULLER-BRAVO T.E., GUTIERREZ C.P., SULLIVAN M., et al.
2020A&A...641A.177M viz 17       D               1 288 ~ Stripped-envelope core-collapse supernova 56Ni masses. Persistently larger values than supernovae type II. MEZA N. and ANDERSON J.P.
2020A&A...642A..33D 85           X         2 7 ~ Radiative-transfer modeling of nebular-phase type II supernovae. Dependencies on progenitor and explosion properties. DESSART L. and HILLIER D.J.
2020A&A...642A.143M 1082       D S   X C F     23 12 13 Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods. MARTINEZ L., BERSTEN M.C., ANDERSON J.P., et al.
2020ApJ...905L..19B 43           X         1 11 ~ Expansion and age of the supernova remnant G350.1-0.3: high-velocity iron ejecta from a core-collapse event. BORKOWSKI K.J., MILTICH W. and REYNOLDS S.P.
2021A&A...645A...6Z 104       D         F     5 34 29 Effect of binary evolution on the inferred initial and final core masses of hydrogen-rich, Type II supernova progenitors. ZAPARTAS E., DE MINK S.E., JUSTHAM S., et al.
2021MNRAS.505.1742R 453       D     X   F     10 264 9 The iron yield of normal Type II supernovae. RODRIGUEZ O., MEZA N., PINEDA-GARCIA J., et al.
2021ApJ...921..143C 46           X         1 6 13 Core-collapse supernovae: from neutrino-driven 1D explosions to light curves and spectra. CURTIS S., WOLFE N., FROHLICH C., et al.
2021A&A...655A.105S viz 44           X         1 22 12 The Type II supernova SN 2020jfo in M 61, implications for progenitor system, and explosion dynamics. SOLLERMAN J., YANG S., SCHULZE S., et al.
2021ApJ...923...86C viz 17       D               1 813 3 Local environments of low-redshift supernovae. CRONIN S.A., UTOMO D., LEROY A.K., et al.
2022MNRAS.512.1541G 18       D               2 162 ~ Metallicity estimation of core-collapse Supernova H II regions in galaxies within 30 Mpc. GANSS R., PLEDGER J.L., SANSOM A.E., et al.
2022MNRAS.512.2777T 90               F     2 31 15 Progenitor and close-in circumstellar medium of type II supernova 2020fqv from high-cadence photometry and ultra-rapid UV spectroscopy. TINYANONT S., RIDDEN-HARPER R., FOLEY R.J., et al.
2022ApJ...928...77L 108       D       C       3 69 ~ Using the Optical-NIR Spectral Energy Distributions to Search for the Evidence of Dust Formation of 66 Supernovae. LI J.-Y., WANG S.-Q., GAN W.-P., et al.
2022MNRAS.513.4556Z 18       D               1 41 1 SN 2019va: a Type IIP Supernova with Large Influence of Nickel-56 Decay on the Plateau-phase Light Curve. ZHANG X., WANG X., SAI H., et al.
2022ApJ...930...34T 45           X         1 23 7 SN 2020jfo: A Short-plateau Type II Supernova from a Low-mass Progenitor. TEJA R.S., SINGH A., SAHU D.K., et al.
2022MNRAS.514.5686P 18       D               2 87 9 Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. PRENTICE S.J., MAGUIRE K., SIEBENALER L., et al.
2022ApJ...934...67B 180           X C       3 11 14 Connecting the Light Curves of Type IIP Supernovae to the Properties of Their Progenitors. BARKER B.L., HARRIS C.E., WARREN M.L., et al.
2022MNRAS.515..897R 466       D     X   F     10 122 8 Luminosity distribution of Type II supernova progenitors. RODRIGUEZ O.
2022MNRAS.517.1483D 179           X   F     3 17 12 Explosion imminent: the appearance of red supergiants at the point of core-collapse. DAVIES B., PLEZ B. and PETRAULT M.
2022ApJ...939..105B 90       S             1 121 10 Seven Years of Coordinated Chandra-NuSTAR Observations of SN 2014C Unfold the Extreme Mass-loss History of Its Stellar Progenitor. BRETHAUER D., MARGUTTI R., MILISAVLJEVIC D., et al.
2023ApJ...942...38M 485       D     X C       10 19 ~ Locating Type II-P Supernovae Using the Expanding Photosphere Method. I. Comparing Distances from Different Line Velocities. MITCHELL R.C., DIDIER B., GANESH S., et al.
2023ApJ...949L..12A 19       D               1 56 3 Constraining High-energy Neutrino Emission from Supernovae with IceCube. ABBASI R., ACKERMANN M., ADAMS J., et al.
2023MNRAS.519..248A 233           X   F     4 46 3 Photometric and spectroscopic analysis of the Type II SN 2020jfo with a short plateau. AILAWADHI B., DASTIDAR R., MISRA K., et al.
2023ApJ...952L..23K 47           X         1 27 ~ SN 2023ixf in Messier 101: A Variable Red Supergiant as the Progenitor Candidate to a Type II Supernova. KILPATRICK C.D., FOLEY R.J., JACOBSON-GALAN W.V., et al.
2023A&A...678A..43N 905       D S   X C       18 37 ~ Spectropolarimetry of Type II supernovae I. Sample, observational data, and interstellar polarization. NAGAO T., MATTILA S., KOTAK R., et al.
2024ApJ...960...72S 70       D     X         2 94 ~ Search for Supernova Progenitor Stars with ZTF and LSST. STROTJOHANN N.L., OFEK E.O., GAL-YAM A., et al.
2024A&A...681A..11N 820       D S   X C F     14 15 ~ Spectropolarimetry of Type II supernovae II. Intrinsic supernova polarization and its relation to photometric and spectroscopic properties. NAGAO T., PATAT F., CIKOTA A., et al.
2024NatAs...8..111F 150           X   F     2 85 ~ An aspherical distribution for the explosive burning ash of core-collapse supernovae. FANG Q., MAEDA K., KUNCARAYAKTI H., et al.
2024ApJ...964L..27S 20       D               1 37 ~ A Bias-corrected Luminosity Function for Red Supergiant Supernova Progenitor Stars. STROTJOHANN N.L., OFEK E.O. and GAL-YAM A.

goto View the references in ADS