other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
SN 2012aw , the SIMBAD biblio (183 results) | C.D.S. - SIMBAD4 rel 1.8 - 2023.06.03CEST09:41:37 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2012IBVS.6024....1H | 1 | O | 2 | 5 | Photometric sequences and astrometric positions of SN 2011fe in M101 and SN 2012aw in M95. | HENDEN A., KRAJCI T. and MUNARI U. | |||
2012ApJ...754L..21F | 39 | X | 1 | 30 | 10 | Evidence for asymmetric distribution of circumstellar material around type Ia supernovae. | FORSTER F., GONZALEZ-GAITAN S., ANDERSON J., et al. | ||
2012MNRAS.424.2841H ![]() |
39 | X | 1 | 245 | 30 | A central excess of stripped-envelope supernovae within disturbed galaxies. | HABERGHAM S.M., JAMES P.A. and ANDERSON J.P. | ||
2012ApJ...756..131V | 1077 | T K A | X C | 26 | 30 | 61 |
The red supergiant progenitor of supernova 2012aw ( PTF12bvh) in Messier 95. |
VAN DYK S.D., CENKO S.B., POZNANSKI D., et al. | |
2012CBET.3054....1F | 41 | T | O X | 2 | 11 | Supernova 2012aw in M95 = PSN J10435372+1140177. | FAGOTTI P., DIMAI A., QUADRI U., et al. | ||
2012CBET.3054....2I | 40 | T | O X | 3 | 7 | Supernova 2012aw in M95 = PSN J10435372+1140177. | ITOH R., UI T. and YAMANAKA M. | ||
2012CBET.3054....3M | 40 | T | O X | 2 | 6 | Supernova 2012aw in M95 = PSN J10435372+1140177. | MUNARI U., VAGNOZZI A. and CASTELLANI F. | ||
2012CBET.3054....4S | 40 | T | O X | 3 | 11 | Supernova 2012aw in M95 = PSN J10435372+1140177. | SIVIERO A., TOMASELLA L., PASTORELLO A., et al. | ||
2012ApJ...759L..13F | 1510 | T K A | X C | 37 | 5 | 55 |
Red and dead: the progenitor of SN 2012aw in M95. |
FRASER M., MAUND J.R., SMARTT S.J., et al. | |
2012ApJ...759...20K | 479 | T K A | X C | 10 | 1 | 54 |
On absorption by circumstellar dust, with the progenitor of SN 2012aw as a case study. |
KOCHANEK C.S., KHAN R. and DAI X. | |
2012JRASC.106...95O | 2 | 0 | News notes : Serpent dust devil; First Earth Trojan asteroid identified; List of five-year technology development priorities to assist NASA planning; Ten-year study shows melt of 4.3 trillion tons of global land ice; Supernova in M95. | OAKES A.I. | |||||
2012ApJ...761...26J | 39 | X | 1 | 67 | 30 | Supernova remnant progenitor masses in M31. | JENNINGS Z.G., WILLIAMS B.F., MURPHY J.W., et al. | ||
2012ApJ...761...63P | 16 | D | 1 | 24 | 26 | Gravitational waves from fallback accretion onto neutron stars. | PIRO A.L. and THRANE E. | ||
2012MNRAS.426.1465P | 39 | X | 1 | 100 | 160 | An empirical relation between sodium absorption and dust extinction. | POZNANSKI D., PROCHASKA J.X. and BLOOM J.S. | ||
2013ApJ...764L..13B | 1205 | T K A | X C | 29 | 13 | 27 |
The long-lived UV "plateau" of SN 2012aw. |
BAYLESS A.J., PRITCHARD T.A., ROMING P.W.A., et al. | |
2013MNRAS.428.1927C | 16 | D | 2 | 330 | 46 | On the association between core-collapse supernovae and HII regions. | CROWTHER P.A. | ||
2013ApJ...767....3D | 40 | X | 1 | 28 | 73 | The temperatures of red supergiants. | DAVIES B., KUDRITZKI R.-P., PLEZ B., et al. | ||
2013MNRAS.431L.102M | 80 | X | 2 | 12 | 27 | Supernova 2012ec: identification of the progenitor and early monitoring with PESSTO. | MAUND J.R., FRASER M., SMARTT S.J., et al. | ||
2013MNRAS.433.1871B ![]() |
3777 | T K A | D | X C | 95 | 32 | 42 |
Supernova 2012aw - a high-energy clone of archetypal Type IIP SN 1999em. |
BOSE S., KUMAR B., SUTARIA F., et al. |
2013ApJ...774...30C | 39 | X | 1 | 22 | 17 | The progenitor of SN 2011ja: clues from circumstellar interaction. | CHAKRABORTI S., RAY A., SMITH R., et al. | ||
2013MNRAS.434.1636T | 80 | X | 2 | 21 | 60 | Comparison of progenitor mass estimates for the type IIP SN 2012A. | TOMASELLA L., CAPPELLARO E., FRASER M., et al. | ||
2013MNRAS.435..771M ![]() |
39 | X | 1 | 17 | 20 | Photometric evolution, orbital modulation and progenitor of Nova Mon 2012. | MUNARI U., DALLAPORTA S., CASTELLANI F., et al. | ||
2013MNRAS.436..774E ![]() |
55 | D | X | 2 | 250 | 143 | The death of massive stars - II. Observational constraints on the progenitors of type Ibc supernovae. | ELDRIDGE J.J., FRASER M., SMARTT S.J., et al. | |
2013A&A...558A.131G ![]() |
55 | D | X | 2 | 60 | 102 | Fundamental properties of core-collapse supernova and GRB progenitors: predicting the look of massive stars before death. | GROH J.H., MEYNET G., GEORGY C., et al. | |
2013MNRAS.436.3224P | 212 | D | X F | 5 | 26 | 30 | An emerging coherent picture of red supergiant supernova explosions. | POZNANSKI D. | |
2014ApJ...781...13L | 121 | X C | 2 | 25 | 145 | A new population of ultra-long duration gamma-ray bursts. | LEVAN A.J., TANVIR N.R., STARLING R.L.C., et al. | ||
2014ApJ...782...30Y | 1056 | T K A | X C | 25 | 22 | 5 |
Electron cooling in a young radio supernova: SN 2012aw. |
YADAV N., RAY A., CHAKRABORTI S., et al. | |
2014MNRAS.438..938M | 120 | X | 3 | 16 | 33 | A late-time view of the progenitors of five Type IIP supernovae. | MAUND J.R., REILLY E. and MATTILA S. | ||
2014MNRAS.438.1577M | 80 | X | 2 | 11 | 26 | A new precise mass for the progenitor of the Type IIP SN 2008bk. | MAUND J.R., MATTILA S., RAMIREZ-RUIZ E., et al. | ||
2014ApJ...782...98B | 890 | K | D | X C | 22 | 21 | 37 | Distance determination to eight galaxies using expanding photosphere method. | BOSE S. and KUMAR B. |
2014MNRAS.439L..56F | 43 | X | 1 | 6 | 39 | On the progenitor of the Type IIP SN 2013ej in M74. | FRASER M., MAUND J.R., SMARTT S.J., et al. | ||
2014AJ....147...79S | 162 | C F | 1 | 4 | 29 | Science with a wide-field UV transient explorer. | SAGIV I., GAL-YAM A., OFEK E.O., et al. | ||
2014MNRAS.439.3694J | 1356 | T K A | D | X C F | 32 | 4 | 54 |
The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines. |
JERKSTRAND A., SMARTT S.J., FRASER M., et al. |
2014ApJ...787..139D | 2249 | T K A | X C | 55 | 22 | 45 |
The Type IIP supernova 2012aw in M95: hydrodynamical modeling of the photospheric phase from accurate spectrophotometric monitoring. |
DALL'ORA M., BOTTICELLA M.T., PUMO M.L., et al. | |
2014ApJ...787..157P | 16 | D | 2 | 51 | 31 | Bolometric and UV light curves of core-collapse supernovae. | PRITCHARD T.A., ROMING P.W.A., BROWN P.J., et al. | ||
2014MNRAS.440.1917D | 16 | D | 2 | 32 | 28 | On the lack of X-ray bright Type IIP supernovae. | DWARKADAS V.V. | ||
2014MNRAS.442....2K | 2026 | T K A | D | S X C | 49 | 30 | 5 |
Broad-band polarimetric follow-up of Type IIP SN 2012aw. |
KUMAR B., PANDEY S.B., ESWARAIAH C., et al. |
2014ApJ...795..142G ![]() |
16 | D | 1 | 448 | 7 | Defining photometric peculiar type Ia supernovae. | GONZALEZ-GAITAN S., HSIAO E.Y., PIGNATA G., et al. | ||
2014AJ....148..107R | 294 | D | X C | 7 | 104 | 27 | Photospheric magnitude diagrams for Type II supernovae: a promising tool to compute distances. | RODRIGUEZ O., CLOCCHIATTI A. and HAMUY M. | |
2014A&A...571A..77N | 357 | S X C | 7 | 10 | 15 | A semianalytical light curve model and its application to Type IIP supernovae. | NAGY A.P., ORDASI A., VINKO J., et al. | ||
2014MNRAS.445.3263H | 320 | X C F | 6 | 26 | 111 | ASASSN-14ae: a tidal disruption event at 200 Mpc. | HOLOIEN T.W.-S., PRIETO J.L., BERSIER D., et al. | ||
2013NewA...20...30M ![]() |
654 | T K A | X C | 15 | 27 | 65 |
BVRI lightcurves of supernovae SN 2011fe in M101, SN 2012aw in M95, and SN 2012cg in NGC 4424. |
MUNARI U., HENDEN A., BELLIGOLI R., et al. | |
2015ApJ...799..215P ![]() |
859 | D | X C | 21 | 53 | 27 | A global model of the light curves and expansion velocities of Type II-Plateau supernovae. | PEJCHA O. and PRIETO J.L. | |
2015MNRAS.448.2312B | 2609 | K A | D | S X C | 64 | 21 | 9 | SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase. | BARBARINO C., DALL'ORA M., BOTTICELLA M.T., et al. |
2015MNRAS.448.2482J | 418 | D | X C | 10 | 18 | 24 | Supersolar Ni/Fe production in the Type IIP SN 2012ec. | JERKSTRAND A., SMARTT S.J., SOLLERMAN J., et al. | |
2015MNRAS.448.2608V ![]() |
17 | D | 1 | 21 | 34 | Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop. | VALENTI S., SAND D., STRITZINGER M., et al. | ||
2012ATel.3979....1B | 156 | T | X | 3 | 2 | ~ |
Swift/UVOT observations of PSN J10435372+1140177 in M 95. |
BROWN P.J. | |
2012ATel.3991....1E | 79 | X | 2 | 2 | 5 | Identification of a candidate progenitor for SN 2012aw in M 95. | ELIAS-ROSA N., VAN DYK S.D., CUILLANDRE J.-C., et al. | ||
2012ATel.3994....1F | 196 | T | X | 4 | 2 | 4 |
A low mass red supergiant progenitor candidate for SN 2012aw. |
FRASER M., MAUND J.R., SMARTT S.J., et al. | |
2012ATel.3995....1I | 119 | T | X | 2 | 2 | 11 |
Swift XRT detection of Supernova 2012aw in X-rays. |
IMMLER S. and BROWN P.J. | |
2012ATel.3996....1P | 198 | T | X | 4 | 1 | 6 |
PTF observations of SN2012aw ( PTF12bvh) and explosion date constraints. |
POZNANSKI D., NUGENT P.E., OFEK E.O., et al. | |
2012ATel.4010....1Y | 121 | T | X | 2 | 1 | 9 |
Radio detection of SN 2012aw. |
YADAV N., CHAKRABORTI S. and RAY A. | |
2012ATel.4012....1S | 119 | T | X | 2 | 2 | 9 |
Radio variability confirmed for SN 2012aw in M 95. |
STOCKDALE C.J., RYDER S.D., VAN DYK S.D., et al. | |
2012ATel.4033....1L | 235 | T | X | 5 | 3 | 7 |
Early-time polarization of the Type II-Plateau Supernova SN 2012aw. |
LEONARD D.C., PIGNATA G., DESSART L., et al. | |
2012ATel.4223....1H | 39 | X | 1 | 3 | ~ | Classification of LSQ 12dcl as a type II SN. | HADJIYSKA E., RABINOWITZ D., BALTAY C., et al. | ||
2015ApJ...805...98B | 202 | X C | 4 | 8 | 14 | The effects on supernova shock breakout and Swift light curves due to the mass of the hydrogen-rich envelope. | BAYLESS A.J., EVEN W., FREY L.H., et al. | ||
2015ApJ...806..160B | 924 | A | D | X C | 23 | 23 | 33 | SN 2013ej: a Type IIL supernova with weak signs of interaction. | BOSE S., SUTARIA F., KUMAR B., et al. |
2015ApJ...806..195V | 706 | T K A | X C | 16 | 24 | 5 | LEGUS discovery of a light echo around supernova 2012aw. | VAN DYK S.D., LEE J.C., ANDERSON J., et al. | |
2015A&A...578A.100W ![]() |
80 | X | 2 | 45 | 7 | The infrared massive stellar content of M 83. | WILLIAMS S.J., BONANOS A.Z., WHITMORE B.C., et al. | ||
2013ATel.5275....1L | 40 | X | 1 | 3 | 11 | SN 2013ej is a highly polarized Type II-Plateau Supernova. | LEONARD D.C., PIGNATA G., DESSART L., et al. | ||
2015MNRAS.450.2373B | 1430 | A | X C F | 34 | 19 | 28 | SN 2013ab: a normal Type IIP supernova in NGC 5669. | BOSE S., VALENTI S., MISRA K., et al. | |
2015MNRAS.450.3137T ![]() |
80 | X | 2 | 27 | 18 | SN 2009ib: a Type II-P supernova with an unusually long plateau. | TAKATS K., PIGNATA G., PUMO M.L., et al. | ||
2015MNRAS.451.2212G | 41 | X | 1 | 25 | 48 | The rise-time of Type II supernovae. | GONZALEZ-GAITAN S., TOMINAGA N., MOLINA J., et al. | ||
2016AJ....151...33G ![]() |
16 | D | 1 | 168 | 26 | UBVRIz light curves of 51 Type II supernovae. | GALBANY L., HAMUY M., PHILLIPS M.M., et al. | ||
2016MNRAS.455.2712B | 707 | D | X C F | 16 | 40 | 3 | Photometric and polarimetric observations of fast declining Type II supernovae 2013hj and 2014G. | BOSE S., KUMAR B., MISRA K., et al. | |
2016ApJ...818....3K | 82 | C | 1 | 24 | 40 | Flash spectroscopy: emission lines from the ionized circumstellar material around <10-day-old Type II supernovae. | KHAZOV D., YARON O., GAL-YAM A., et al. | ||
2016ApJ...818..123B | 86 | X | 2 | 18 | 101 | The development of explosions in axisymmetric ab initio core-collapse supernova simulations of 12-25 M stars. | BRUENN S.W., LENTZ E.J., HIX W.R., et al. | ||
2016MNRAS.456L..16F | 1082 | T K A | X C | 25 | 3 | 8 |
The disappearance of the progenitor of SN 2012aw in late-time imaging. |
FRASER M. | |
2016MNRAS.456..323K | 41 | X | 1 | 28 | 8 | Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy: the big brother of SN 1998S. | KANGAS T., MATTILA S., KANKARE E., et al. | ||
2016MNRAS.456.2848H ![]() |
16 | D | 1 | 919 | 27 | Supernovae and their host galaxies - III. The impact of bars and bulges on the radial distribution of supernovae in disc galaxies. | HAKOBYAN A.A., KARAPETYAN A.G., BARKHUDARYAN L.V., et al. | ||
2016ApJ...820...23G | 44 | X | 1 | 11 | 34 | Shock breakout and early light curves of Type II-p supernovae observed with Kepler. | GARNAVICH P.M., TUCKER B.E., REST A., et al. | ||
2016ApJ...820...33R ![]() |
422 | D | X C | 10 | 70 | 36 | Type II supernova energetics and comparison of light curves to shock-cooling models. | RUBIN A., GAL-YAM A., DE CIA A., et al. | |
2016A&A...587L...7T ![]() |
16 | D | 2 | 78 | 6 | Metallicity from Type II supernovae from the (i)PTF. | TADDIA F., MOQUIST P., SOLLERMAN J., et al. | ||
2016ApJ...822....6D | 284 | X | 7 | 23 | 21 | Extensive spectroscopy and photometry of the Type IIP supernova 2013ej. | DHUNGANA G., KEHOE R., VINKO J., et al. | ||
2016ApJ...823..127N | 260 | D | X C | 6 | 25 | 15 | The importance of 56Ni in shaping the light curves of type II supernovae. | NAKAR E., POZNANSKI D. and KATZ B. | |
2016A&A...589A..53N | 301 | D | X C | 7 | 18 | 16 | A two-component model for fitting light curves of core-collapse supernovae. | NAGY A.P. and VINKO J. | |
2016ApJ...826L...3T | 84 | X | 2 | 4 | 13 | Terrestrial effects of nearby supernovae in the early pleistocene. | THOMAS B.C., ENGLER E.E., KACHELRIESS M., et al. | ||
2016MNRAS.459.3939V ![]() |
544 | D | X C F | 12 | 210 | 71 | The diversity of Type II supernova versus the similarity in their progenitors. | VALENTI S., HOWELL D.A., STRITZINGER M.D., et al. | |
2016AJ....152..102B ![]() |
81 | F | 1 | 24 | 13 | Interpreting flux from broadband photometry. | BROWN P.J., BREEVELD A., ROMING P.W.A., et al. | ||
2016MNRAS.461.2003Y ![]() |
447 | X F | 10 | 18 | 17 | 450 d of Type II SN 2013ej in optical and near-infrared. | YUAN F., JERKSTRAND A., VALENTI S., et al. | ||
2016MNRAS.461.3296N ![]() |
41 | X | 1 | 355 | 20 | Multimessenger signals of long-term core-collapse supernova simulations: synergetic observation strategies. | NAKAMURA K., HORIUCHI S., TANAKA M., et al. | ||
2016MNRAS.463.1269B | 81 | X | 2 | 29 | 26 | The evolution of red supergiants to supernova in NGC 2100. | BEASOR E.R. and DAVIES B. | ||
2016ApJ...832..155F | 46 | X | 1 | 3 | 17 | The High Cadence Transient Survey (HITS). I. Survey design and supernova shock breakout constraints. | FORSTER F., MAUREIRA J.C., MARTIN J.S., et al. | ||
2016ApJ...833..231T | 16 | D | 1 | 103 | 21 | A systematic study of mid-infrared emission from core-collapse supernovae with SPIRITS. | TINYANONT S., KASLIWAL M.M., FOX O.D., et al. | ||
2017ApJ...834...60Y | 58 | D | X | 2 | 33 | 15 | Interstellar-medium mapping in M82 through light echoes around supernova 2014J. | YANG Y., WANG L., BAADE D., et al. | |
2017ApJ...834..118M | 42 | X | 1 | 22 | 22 | Asphericity, interaction, and dust in the type II-P/II-L supernova 2013EJ in Messier 74. | MAUERHAN J.C., VAN DYK S.D., JOHANSSON J., et al. | ||
2017A&A...597A..92K | 41 | X | 1 | 19 | 10 | Core-collapse supernova progenitor constraints using the spatial distributions of massive stars in local galaxies. | KANGAS T., PORTINARI L., MATTILA S., et al. | ||
2017MNRAS.464.3013P | 222 | D | X C F | 4 | 30 | 11 | Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae. | PUMO M.L., ZAMPIERI L., SPIRO S., et al. | |
2017ApJ...840..105M | 83 | X | 2 | 4 | 4 | A supernova at 50 pc: effects on the Earth's atmosphere and biota. | MELOTT A.L., THOMAS B.C., KACHELRIESS M., et al. | ||
2017MNRAS.467..369S | 2733 | D | X C F | 65 | 79 | 4 | After the fall: late-time spectroscopy of Type IIP supernovae. | SILVERMAN J.M., PICKETT S., WHEELER J.C., et al. | |
2017ApJ...846...50M | 16 | D | 1 | 40 | 6 | IPTF15eqv: multiwavelength expose of a peculiar calcium-rich transient. | MILISAVLJEVIC D., PATNAUDE D.J., RAYMOND J.C., et al. | ||
2017ApJ...846..101B | 207 | X C | 4 | 2 | 2 | The SuperNovae Analysis aPplication (SNAP). | BAYLESS A.J., FRYER C.L., WOLLAEGER R., et al. | ||
2017MNRAS.470.1642F | 43 | X | 1 | 14 | 28 | Pre-supernova outbursts via wave heating in massive stars - I. Red supergiants. | FULLER J. | ||
2017MNRAS.469.2202M | 675 | D | S X C | 15 | 30 | 12 | The resolved stellar populations around 12 Type IIP supernovae. | MAUND J.R. | |
2017ApJ...850...89G | 41 | X | 1 | 252 | 11 | Type II supernova spectral diversity. I. Observations, sample characterization, and spectral line evolution. | GUTIERREZ C.P., ANDERSON J.P., HAMUY M., et al. | ||
2018MNRAS.473..513F | 685 | D | X C F | 15 | 29 | 6 | The evolution of temperature and bolometric luminosity in Type II supernovae. | FARAN T., NAKAR E. and POZNANSKI D. | |
2018MNRAS.474.2116D | 142 | D | X | 4 | 58 | 13 | The initial masses of the red supergiant progenitors to Type II supernovae. | DAVIES B. and BEASOR E.R. | |
2018MNRAS.475..277J | 334 | X C F | 6 | 24 | 2 | Emission line models for the lowest mass core-collapse supernovae - I. Case study of a 9 M☉ one-dimensional neutrino-driven explosion. | JERKSTRAND A., ERTL T., JANKA H.-T., et al. | ||
2018MNRAS.475.1937T | 125 | X C | 2 | 27 | 3 | SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events. | TOMASELLA L., CAPPELLARO E., PUMO M.L., et al. | ||
2018MNRAS.475.3959H | 435 | D | X C F | 9 | 26 | 5 | SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant. | HUANG F., WANG X.-F., HOSSEINZADEH G., et al. | |
2018A&A...611A..25G ![]() |
42 | X | 1 | 43 | 5 | An updated Type II supernova Hubble diagram. | GALL E.E.E., KOTAK R., LEIBUNDGUT B., et al. | ||
2018MNRAS.476.2629M | 42 | X | 1 | 52 | 5 | The very young resolved stellar populations around stripped-envelope supernovae. | MAUND J.R. | ||
2018ApJ...858...15M | 17 | D | 2 | 23 | 7 | Measuring the progenitor masses and dense circumstellar material of Type II supernovae. | MOROZOVA V., PIRO A.L. and VALENTI S. | ||
2018A&A...613A..35K | 17 | D | 3 | 171 | 5 | Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy. | KUNCARAYAKTI H., ANDERSON J.P., GALBANY L., et al. | ||
2018ApJ...861....1N | 42 | X | 1 | 4 | ~ | Multi-band polarization of Type IIP supernovae due to light echo from circumstellar dust. | NAGAO T., MAEDA K. and TANAKA M. | ||
2018ApJ...862..107B | 251 | X C | 5 | 26 | 1 | ASASSN-15nx: a luminous Type II supernova with a "perfect" linear decline. | BOSE S., DONG S., KOCHANEK C.S., et al. | ||
2018NatAs...2..574A | 12 | 3 | The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor. | ANDERSON J.P., DESSART L., GUTIERREZ C.P., et al. | |||||
2018ApJ...863..163N ![]() |
309 | D | X C | 7 | 24 | ~ | Long-term behavior of a Type IIP supernova SN 2004dj in the radio bands. | NAYANA A.J., CHANDRA P. and RAY A.K. | |
2018MNRAS.473.3863L | 100 | D | F | 3 | 83 | 4 | Progenitors of low-luminosity Type II-Plateau supernovae. | LISAKOV S.M., DESSART L., HILLIER D.J., et al. | |
2018MNRAS.479.2421D | 393 | D | X F | 9 | 48 | 1 | SN 2015ba: a Type IIP supernova with a long plateau. | DASTIDAR R., MISRA K., HOSSEINZADEH G., et al. | |
2018MNRAS.480.2072K | 42 | X | 1 | 29 | 1 | A potential progenitor for the Type Ic supernova 2017ein. | KILPATRICK C.D., TAKARO T., FOLEY R.J., et al. | ||
2018MNRAS.480.2475S | 226 | D | X C | 5 | 58 | ~ | ASASSN-14dq: a fast-declining Type II-P supernova in a low-luminosity host galaxy. | SINGH A., SRIVASTAV S., KUMAR B., et al. | |
2018MNRAS.481.2536K | 376 | X C | 8 | 20 | ~ | The dusty progenitor star of the Type II supernova 2017eaw. | KILPATRICK C.D. and FOLEY R.J. | ||
2019ApJ...870....1E ![]() |
17 | D | 1 | 13 | ~ | PUSHing core-collapse supernovae to explosions in spherical symmetry. II. Explodability and remnant properties. | EBINGER K., CURTIS S., FROHLICH C., et al. | ||
2019ApJ...870....2C ![]() |
85 | C | 1 | 7 | ~ | PUSHing core-collapse supernovae to explosions in spherical symmetry. III. Nucleosynthesis yields. | CURTIS S., EBINGER K., FROHLICH C., et al. | ||
2019ApJ...870L..16S | 17 | D | 1 | 39 | ~ | Bright Type IIP supernovae in (low-metallicity) galaxies. | SCOTT S., NICHOLL M., BLANCHARD P., et al. | ||
2019PASP..131a4002H ![]() |
170 | X C | 3 | 173 | ~ | Carnegie Supernova Project-II: the near-infrared spectroscopy program. | HSIAO E.Y., PHILLIPS M.M., MARION G.H., et al. | ||
2019MNRAS.483.5459R ![]() |
187 | D | X | 5 | 66 | ~ | Type II supernovae as distance indicators at near-IR wavelengths. | RODRIGUEZ O., PIGNATA G., HAMUY M., et al. | |
2019ApJ...873L...3B ![]() |
170 | C F | 2 | 13 | ~ | Strongly bipolar inner ejecta of the normal Type IIP supernova ASASSN-16at. | BOSE S., DONG S., ELIAS-ROSA N., et al. | ||
2019ApJ...875..136V ![]() |
494 | A | X C | 11 | 26 | ~ | The Type II-plateau supernova 2017eaw in NGC 6946 and its red supergiant progenitor. | VAN DYK S.D., ZHENG W., MAUND J.R., et al. | |
2019ApJ...876...19S | 911 | D | X C | 21 | 22 | ~ | The Type II-P supernova 2017eaw: from explosion to the nebular phase. | SZALAI T., VINKO J., KONYVES-TOTH R., et al. | |
2019MNRAS.486.2850D | 128 | X F | 2 | 27 | ~ | SN 2016B a.k.a. ASASSN-16ab: a transitional Type II supernova. | DASTIDAR R., MISRA K., SINGH M., et al. | ||
2019ApJS..241...38S ![]() |
358 | D | X C | 8 | 220 | ~ | A comprehensive analysis of Spitzer supernovae. | SZALAI T., ZSIROS S., FOX O.D., et al. | |
2019MNRAS.487.2505K | 170 | X F | 3 | 15 | ~ | Swift spectra of AT2018cow: a white dwarf tidal disruption event? | KUIN N.P.M., WU K., OATES S., et al. | ||
2019ApJ...881...22A ![]() |
43 | X | 1 | 19 | ~ | KSP-SN-2016kf: a long-rising H-rich Type II supernova with unusually high 56Ni mass discovered in the KMTNet Supernova Program. | AFSARIARDCHI N., MOON D.-S., DROUT M.R., et al. | ||
2019ApJ...881..158S | 145 | D | X | 4 | 14 | ~ | The initial mass-final luminosity relation of Type II supernova progenitors: hints of new physics? | STRANIERO O., DOMINGUEZ I., PIERSANTI L., et al. | |
2019MNRAS.488.3089K | 43 | X | 1 | 38 | ~ | On the observational behaviour of the highly polarized Type IIn supernova SN 2017hcc. | KUMAR B., ESWARAIAH C., SINGH A., et al. | ||
2019MNRAS.488.4239P ![]() |
102 | D | C | 4 | 106 | ~ | Comparison of the optical light curves of hydrogen-rich and hydrogen-poor type II supernovae. | PESSI P.J., FOLATELLI G., ANDERSON J.P., et al. | |
2019ApJ...882...68S | 17 | D | 1 | 27 | ~ | Observational signature of circumstellar interaction and 56Ni-mixing in the Type II Supernova 2016gfy. | SINGH A., KUMAR B., MORIYA T.J., et al. | ||
2019MNRAS.489..641M | 17 | D | 1 | 42 | ~ | A comparison of explosion energies for simulated and observed core-collapse supernovae. | MURPHY J.W., MABANTA Q. and DOLENCE J.C. | ||
2019A&A...629A.124M | 128 | A | D | S X C | 2 | 15 | ~ | Mass discrepancy analysis for a select sample of Type II-Plateau supernovae. | MARTINEZ L. and BERSTEN M.C. |
2019A&A...631A...8H | 1064 | A | D | S X C | 24 | 19 | ~ | Photometric and spectroscopic diversity of Type II supernovae. | HILLIER D.J. and DESSART L. |
2019MNRAS.489.5802V | 17 | D | 1 | 72 | ~ | Spectrophotometric templates for core-collapse supernovae and their application in simulations of time-domain surveys. | VINCENZI M., SULLIVAN M., FIRTH R.E., et al. | ||
2019ApJ...887....4D | 570 | D | X C | 13 | 73 | ~ | Carnegie Supernova Project-II: near-infrared spectroscopic diversity of Type II supernovae. | DAVIS S., HSIAO E.Y., ASHALL C., et al. | |
2019MNRAS.490.2799D | 187 | D | C F | 5 | 109 | ~ | The Berkeley sample of Type II supernovae: BVRI light curves and spectroscopy of 55 SNe II. | DE JAEGER T., ZHENG W., STAHL B.E., et al. | |
2020MNRAS.492.2578S | 87 | C | 1 | 5 | ~ | Missing red supergiants and carbon burning. | SUKHBOLD T. and ADAMS S. | ||
2020ApJ...890..177K | 44 | X | 1 | 19 | ~ | A new method to classify Type IIP/IIL supernovae based on their spectra. | KOU S., CHEN X. and LIU X. | ||
2020MNRAS.494L..53F | 17 | D | 1 | 19 | ~ | The uncertain masses of progenitors of core-collapse supernovae and direct-collapse black holes. | FARRELL E.J., GROH J.H., MEYNET G., et al. | ||
2020ApJ...895L...3A | 44 | X | 1 | 142 | ~ | Carnegie supernova Project-II: a new method to photometrically identify sub-types of extreme Type Ia supernovae. | ASHALL C., LU J., BURNS C., et al. | ||
2020MNRAS.496.3402D | 104 | D | X | 3 | 23 | ~ | A measurement of the Hubble constant from Type II supernovae. | DE JAEGER T., STAHL B.E., ZHENG W., et al. | |
2020MNRAS.496.3725J | 496 | K | D | X C | 11 | 18 | ~ | A low-luminosity core-collapse supernova very similar to SN 2005cs. | JAGER Z., VINKO J., BIRO B.I., et al. |
2020MNRAS.497..361M | 104 | D | X | 3 | 44 | ~ | The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio. | MULLER-BRAVO T.E., GUTIERREZ C.P., SULLIVAN M., et al. | |
2020MNRAS.497.2227P | 17 | D | 5 | 16 | ~ | Constraining early-time dust formation in core-collapse supernovae. | PRIESTLEY F.D., BEVAN A., BARLOW M.J., et al. | ||
2020ApJ...900...11W ![]() |
44 | X | 1 | 22 | ~ | Late-time circumstellar interaction of SN 2017eaw in NGC 6946. | WEIL K.E., FESEN R.A., PATNAUDE D.J., et al. | ||
2020A&A...641A.177M ![]() |
17 | D | 1 | 288 | ~ | Stripped-envelope core-collapse supernova 56Ni masses. Persistently larger values than supernovae type II. | MEZA N. and ANDERSON J.P. | ||
2020MNRAS.499..974G | 261 | X C F | 4 | 41 | ~ | SN 2017ivv: two years of evolution of a transitional Type II supernova. | GUTIERREZ C.P., PASTORELLO A., JERKSTRAND A., et al. | ||
2020A&A...642A..33D | 235 | D | X C | 5 | 7 | ~ | Radiative-transfer modeling of nebular-phase type II supernovae. Dependencies on progenitor and explosion properties. | DESSART L. and HILLIER D.J. | |
2020A&A...642A.143M | 670 | D | X C F | 14 | 12 | ~ | Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods. | MARTINEZ L., BERSTEN M.C., ANDERSON J.P., et al. | |
2020ApJ...903..132H ![]() |
174 | X | 4 | 22 | ~ | A non-equipartition shock wave traveling in a dense circumstellar environment around SN 2020oi. | HORESH A., SFARADI I., ERGON M., et al. | ||
2021A&A...645A...6Z | 90 | F | 4 | 34 | ~ | Effect of binary evolution on the inferred initial and final core masses of hydrogen-rich, Type II supernova progenitors. | ZAPARTAS E., DE MINK S.E., JUSTHAM S., et al. | ||
2021ApJ...908...75B | 18 | D | 1 | 556 | ~ | The radio luminosity-risetime function of core-collapse supernovae. | BIETENHOLZ M.F., BARTEL N., ARGO M., et al. | ||
2021ApJ...909..145D | 90 | C | 2 | 25 | ~ | SN 2013ai: a link between hydrogen-rich and hydrogen-poor core-collapse supernovae. | DAVIS S., PESSI P.J., FRASER M., et al. | ||
2021MNRAS.503.3472B | 269 | X C | 5 | 36 | ~ | ASASSN-18am/SN 2018gk: an overluminous Type IIb supernova from a massive progenitor. | BOSE S., DONG S., KOCHANEK C.S., et al. | ||
2021MNRAS.504.1009D | 90 | F | 1 | 38 | ~ | The optical properties of three Type II supernovae: 2014cx, 2014cy, and 2015cz. | DASTIDAR R., MISRA K., SINGH M., et al. | ||
2021MNRAS.504.3544N | 1568 | T K A | D | X C F | 33 | 9 | ~ |
Parameters of the type-IIP supernova SN 2012aw. |
NIKIFOROVA A.A., BAKLANOV P.V., BLINNIKOV S.I., et al. |
2021ApJ...914...41J | 90 | C | 1 | 18 | ~ | A grid of core-collapse supernova remnant models. I. The effect of wind-driven mass loss. | JACOVICH T., PATNAUDE D., SLANE P., et al. | ||
2021MNRAS.505.3664N | 45 | X | 1 | 14 | ~ | Evidence for multiple origins of fast declining Type II supernovae from spectropolarimetry of SN 2013ej and SN 2017ahn. | NAGAO T., PATAT F., TAUBENBERGER S., et al. | ||
2021A&A...651A..10D | 179 | X | 4 | 10 | ~ | Polarization signatures of a high-velocity scatterer in nebular-phase spectra of Type II supernovae. | DESSART L., HILLIER D.J. and LEONARD D.C. | ||
2021A&A...651A..19D | 2849 | T A | S X C | 61 | 16 | ~ |
Multiepoch VLT-FORS spectropolarimetric observations of supernova 2012aw reveal an asymmetric explosion. |
DESSART L., LEONARD D.C., HILLIER D.J., et al. | |
2021A&A...652A..64D | 538 | A | D | S X C | 11 | 14 | ~ | The explosion of 9-29 M☉ stars as Type II supernovae: Results from radiative-transfer modeling at one year after explosion. | DESSART L., HILLIER D.J., SUKHBOLD T., et al. |
2021ApJ...919...17S | 18 | D | 2 | 72 | ~ | Spitzer's last look at extragalactic explosions: long-term evolution of interacting supernovae. | SZALAI T., FOX O.D., ARENDT R.G., et al. | ||
2021ApJ...921..143C | 45 | X | 1 | 6 | ~ | Core-collapse supernovae: from neutrino-driven 1D explosions to light curves and spectra. | CURTIS S., WOLFE N., FROHLICH C., et al. | ||
2021A&A...655A.105S ![]() |
45 | X | 1 | 22 | ~ | The Type II supernova SN 2020jfo in M 61, implications for progenitor system, and explosion dynamics. | SOLLERMAN J., YANG S., SCHULZE S., et al. | ||
2022MNRAS.512.2777T | 233 | X F | 4 | 31 | ~ | Progenitor and close-in circumstellar medium of type II supernova 2020fqv from high-cadence photometry and ultra-rapid UV spectroscopy. | TINYANONT S., RIDDEN-HARPER R., FOLEY R.J., et al. | ||
2022A&A...660A.138S ![]() |
93 | X | 2 | 9 | ~ | PGIR 20eid (SN 2020qmp): A Type IIP Supernova at 15.6 Mpc discovered by the Palomar Gattini-IR survey. | SRINIVASARAGAVAN G.P., SFARADI I., JENCSON J., et al. | ||
2022MNRAS.513.4556Z | 19 | D | 1 | 41 | ~ | SN 2019va: a Type IIP Supernova with Large Influence of Nickel-56 Decay on the Plateau-phase Light Curve. | ZHANG X., WANG X., SAI H., et al. | ||
2022ApJ...930...31B | 19 | D | 1 | 90 | ~ | Characterization of Supernovae Based on the Spectral-Temporal Energy Distribution: Two Possible SN Ib Subtypes. | BENGYAT O. and GAL-YAM A. | ||
2022ApJ...930...34T | 47 | X | 1 | 23 | ~ | SN 2020jfo: A Short-plateau Type II Supernova from a Low-mass Progenitor. | TEJA R.S., SINGH A., SAHU D.K., et al. | ||
2022MNRAS.514.4620D | 19 | D | 1 | 26 | ~ | A 5 per cent measurement of the Hubble-Lemaitre constant from Type II supernovae. | DE JAEGER T., GALBANY L., RIESS A.G., et al. | ||
2022MNRAS.514.5686P | 19 | D | 2 | 87 | ~ | Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. | PRENTICE S.J., MAGUIRE K., SIEBENALER L., et al. | ||
2022ApJ...934...67B | 467 | X C | 9 | 11 | ~ | Connecting the Light Curves of Type IIP Supernovae to the Properties of Their Progenitors. | BARKER B.L., HARRIS C.E., WARREN M.L., et al. | ||
2022MNRAS.515..897R | 485 | D | X F | 10 | 122 | ~ | Luminosity distribution of Type II supernova progenitors. | RODRIGUEZ O. | |
2022ApJ...935...31H | 93 | F | 1 | 27 | ~ | Weak Mass Loss from the Red Supergiant Progenitor of the Type II SN 2021yja. | HOSSEINZADEH G., KILPATRICK C.D., DONG Y., et al. | ||
2022MNRAS.515.4302N | 252 | D | X F | 5 | 47 | ~ | Dust masses for a large sample of core-collapse supernovae from optical emission line asymmetries: dust formation on 30-year time-scales. | NICULESCU-DUVAZ M., BARLOW M.J., BEVAN A., et al. | |
2022ApJ...934..134V | 373 | X C | 7 | 17 | ~ | Early-time Ultraviolet Spectroscopy and Optical Follow-up Observations of the Type IIP Supernova 2021yja. | VASYLYEV S.S., FILIPPENKO A.V., VOGL C., et al. | ||
2022ApJ...936...98B | 47 | X | 1 | 9 | ~ | Radio Spectra of SN 2020oi: Effects of Radiative Cooling on the Deduced Source Properties. | BJORNSSON C.-I. | ||
2022ApJ...936..101T | 47 | X | 1 | 7 | ~ | Modeling Extinction and Reddening Effects by Circumstellar Dust in the Betelgeuse Envelope in the Presence of Radiative Torque Disruption. | TRUONG B., TRAM L.N., HOANG T., et al. | ||
2022MNRAS.517.1483D | 140 | X F | 2 | 17 | ~ | Explosion imminent: the appearance of red supergiants at the point of core-collapse. | DAVIES B., PLEZ B. and PETRAULT M. | ||
2022A&A...666A..82R | 560 | X C | 11 | 18 | ~ | Type IIP supernova SN2016X in radio frequencies. | RUIZ-CARMONA R., SFARADI I. and HORESH A. | ||
2022AJ....164..250L | 47 | X | 1 | 30 | ~ | Toward the Automated Detection of Light Echoes in Synoptic Surveys: Considerations on the Application of Deep Convolutional Neural Networks. | LI X., BIANCO F.B., DOBLER G., et al. | ||
2022ApJ...939..105B | 93 | S | 1 | 121 | ~ | Seven Years of Coordinated Chandra-NuSTAR Observations of SN 2014C Unfold the Extreme Mass-loss History of Its Stellar Progenitor. | BRETHAUER D., MARGUTTI R., MILISAVLJEVIC D., et al. | ||
2023ApJ...948L..19S | 50 | X | 1 | 22 | ~ | Scary Barbie: An Extremely Energetic, Long-duration Tidal Disruption Event Candidate without a Detected Host Galaxy at z = 0.995. | SUBRAYAN B.M., MILISAVLJEVIC D., CHORNOCK R., et al. | ||
2023ApJ...949L..12A | 20 | D | 2 | 56 | ~ | Constraining High-energy Neutrino Emission from Supernovae with IceCube. | ABBASI R., ACKERMANN M., ADAMS J., et al. |
© Université de Strasbourg/CNRS
• Contact