SN 2012au , the SIMBAD biblio

SN 2012au , the SIMBAD biblio (67 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST16:49:00


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2012CBET.3052....1H 40 T       O X         2 5 Supernova 2012au in NGC 4790 = PSN J12545218-1014502. HOWERTON S., DRAKE A.J., DJORGOVSKI S.G., et al.
2012CBET.3052....2S 39 T       O X         2 3 Supernova 2012au in NGC 4790 = PSN J12545218-1014502. SILVERMAN J.M., CENKO S.B., MILLER A.A., et al.
2013MNRAS.428.1927C 16       D               1 330 52 On the association between core-collapse supernovae and HII regions. CROWTHER P.A.
2013ApJ...770L..38M 1781 T K A     X C       44 7 50
SN 2012au: a golden link between superluminous supernovae and their lower-luminosity counterparts.
MILISAVLJEVIC D., SODERBERG A.M., MARGUTTI R., et al.
2013ApJ...772L..17T 1622 T   A     X C       40 20 16 A luminous and fast-expanding type Ib supernova
SN 2012au.
TAKAKI K., KAWABATA K.S., YAMANAKA M., et al.
2013MNRAS.436..774E viz 250       D S   X         6 250 249 The death of massive stars - II. Observational constraints on the progenitors of type Ibc supernovae. ELDRIDGE J.J., FRASER M., SMARTT S.J., et al.
2013A&A...558L...1G 45           X         1 5 63 Progenitors of supernova Ibc: a single Wolf-Rayet star as the possible progenitor of the SN Ib iPTF13bvn. GROH J.H., GEORGY C. and EKSTROEM S.
2013A&A...558A.131G viz 40           X         1 60 160 Fundamental properties of core-collapse supernova and GRB progenitors: predicting the look of massive stars before death. GROH J.H., MEYNET G., GEORGY C., et al.
2014MNRAS.438.2924C 39           X         1 16 12 Type Ib SN 1999dn as an example of the thoroughly mixed ejecta of Ib supernovae. CANO Z., MAEDA K. and SCHULZE S.
2014A&A...566A.102S 40           X         1 41 97 GRB 120422A/SN 2012bz: Bridging the gap between low- and high-luminosity gamma-ray bursts. SCHULZE S., MALESANI D., CUCCHIARA A., et al.
2014MNRAS.442.2768W 16       D               1 39 16 Optical follow-up observations of PTF10qts, a luminous broad-lined Type Ic supernova found by the Palomar Transient Factory. WALKER E.S., MAZZALI P.A., PIAN E., et al.
2014ApJ...797....2K 2542 T K A S   X C       62 10 21 Radio observations reveal a smooth circumstellar environment around the extraordinary type Ib supernova 2012au. KAMBLE A., SODERBERG A.M., CHOMIUK L., et al.
2014ApJ...797..107M 42           X         1 18 108 Relativistic supernovae have shorter-lived central engines or more extended progenitors: the case of SN 2012ap. MARGUTTI R., MILISAVLJEVIC D., SODERBERG A.M., et al.
2012ATel.3967....1H 39           X         1 2 1 A bright supernova candidate in NGC 4790. HOWERTON S., DRAKE A.J., DJORGOVSKI S.G., et al.
2012ATel.3971....1V 117 T         X         2 2 4 Attempt at progenitor identification of
PSN J12545218-1014502 in NGC 4790.
VAN DYK S.D., CENKO S.B., SILVERMAN J.M., et al.
2016ApJ...828L..18N 274     A     X C       6 9 85 Superluminous supernova SN 2015bn in the nebular phase: evidence for the engine-powered explosion of a stripped massive star. NICHOLL M., BERGER E., MARGUTTI R., et al.
2017ApJ...835...13J 126           X         3 22 99 Long-duration superluminous supernovae at late times. JERKSTRAND A., SMARTT S.J., INSERRA C., et al.
2017ApJ...835...64G 19       D               1 91 351 An open catalog for supernova data. GUILLOCHON J., PARRENT J., KELLEY L.Z., et al.
2016A&A...596A..67R 40           X         1 60 14 SN 2012aa: A transient between Type Ibc core-collapse and superluminous supernovae. ROY R., SOLLERMAN J., SILVERMAN J.M., et al.
2017ApJ...835..140M 16       D               1 194 134 Ejection of the massive hydrogen-rich envelope timed with the collapse of the stripped SN 2014C. MARGUTTI R., KAMBLE A., MILISAVLJEVIC D., et al.
2017ApJ...837....1Y 893   K       X C       21 13 11 Broad-lined supernova 2016coi with a helium envelope. YAMANAKA M., NAKAOKA T., TANAKA M., et al.
2018MNRAS.476.2629M 469       D S   X   F     10 52 15 The very young resolved stellar populations around stripped-envelope supernovae. MAUND J.R.
2018A&A...613A..35K 16       D               4 171 55 Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy. KUNCARAYAKTI H., ANDERSON J.P., GALBANY L., et al.
2018MNRAS.478..110S 41           X         1 16 6 Broad-band emission properties of central engine-powered supernova ejecta interacting with a circumstellar medium. SUZUKI A. and MAEDA K.
2018ApJ...864...45M viz 42           X         1 37 58 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018ApJ...864L..36M 1465 T K A     X C       34 16 8 Evidence for a pulsar wind nebula in the Type Ib peculiar supernova
SN 2012au.
MILISAVLJEVIC D., PATNAUDE D.J., CHEVALIER R.A., et al.
2018ApJ...868L..32B 41           X         1 9 7 Where is the engine hiding its missing energy? Constraints from a deep X-ray non-detection of the superluminous SN 2015bn. BHIROMBHAKDI K., CHORNOCK R., MARGUTTI R., et al.
2019A&A...621A..64T 42           X         1 12 6 The luminous late-time emission of the type-Ic supernova iPTF15dtg - evidence for powering from a magnetar? TADDIA F., SOLLERMAN J., FREMLING C., et al.
2019MNRAS.482.1545S viz 17       D               1 320 54 The Berkeley sample of stripped-envelope supernovae. SHIVVERS I., FILIPPENKO A.V., SILVERMAN J.M., et al.
2019PASP..131a4002H viz 42           X         1 173 56 Carnegie Supernova Project-II: the near-infrared spectroscopy program. HSIAO E.Y., PHILLIPS M.M., MARION G.H., et al.
2019MNRAS.484.5468O 84           X         2 9 5 Dust formation in embryonic pulsar-aided supernova remnants. OMAND C.M.B., KASHIYAMA K. and MURASE K.
2019ApJ...880L..22W 100       D       C       2 31 ~ Optimal classification and outlier detection for stripped-envelope core-collapse supernovae. WILLIAMSON M., MODJAZ M. and BIANCO F.B.
2019ApJ...880..150S 42           X         1 10 ~ Three-dimensional hydrodynamic simulations of supernova ejecta with a central energy source. SUZUKI A. and MAEDA K.
2019ApJ...883..147T viz 42           X         1 22 4 SN 2016coi (ASASSN-16fp): an energetic H-stripped core-collapse supernova from a massive stellar progenitor with large mass loss. TERRERAN G., MARGUTTI R., BERSIER D., et al.
2019MNRAS.489.5802V 17       D               1 72 28 Spectrophotometric templates for core-collapse supernovae and their application in simulations of time-domain surveys. VINCENZI M., SULLIVAN M., FIRTH R.E., et al.
2019ApJ...886...24L 42           X         1 18 ~ A search for late-time radio emission and fast radio bursts from superluminous supernovae. LAW C.J., OMAND C.M.B., KASHIYAMA K., et al.
2020MNRAS.497..246G 171             C F     2 14 14 AT2018kzr: the merger of an oxygen-neon white dwarf and a neutron star or black hole. GILLANDERS J.H., SIM S.A. and SMARTT S.J.
2020ApJ...902..139K viz 43           X         1 22 5 Direct evidence of two-component ejecta in Supernova 2016gkg from nebular spectroscopy. KUNCARAYAKTI H., FOLATELLI G., MAEDA K., et al.
2021ApJ...908...75B 17       D               1 556 32 The radio luminosity-risetime function of core-collapse supernovae. BIETENHOLZ M.F., BARTEL N., ARGO M., et al.
2021MNRAS.501.3122C 17       D               1 116 ~ The delay time distribution of supernovae from integral-field spectroscopy of nearby galaxies. CASTRILLO A., ASCASIBAR Y., GALBANY L., et al.
2021MNRAS.505.2530A 392           X   F     8 41 8 Progenitor mass constraints for the type Ib intermediate-luminosity SN 2015ap and the highly extinguished SN 2016bau. ARYAN A., PANDEY S.B., ZHENG W., et al.
2021ApJ...917...77V 47           X         1 7 27 Gamma-ray thermalization and leakage from millisecond magnetar nebulae: toward a self-consistent model for superluminous supernovae. VURM I. and METZGER B.D.
2021MNRAS.507.1229P 12841 T K A D S   X C F     292 39 18 Photometric, polarimetric, and spectroscopic studies of the luminous, slow-decaying Type Ib
SN 2012au.
PANDEY S.B., KUMAR A., KUMAR B., et al.
2021A&A...656A..61D viz 45           X         1 16 20 Nebular phase properties of supernova Ibc from He-star explosions. DESSART L., HILLIER D.J., SUKHBOLD T., et al.
2021ApJ...923...86C viz 17       D               1 813 3 Local environments of low-redshift supernovae. CRONIN S.A., UTOMO D., LEROY A.K., et al.
2021ApJ...923L..24S 496       D     X C       11 27 11 Luminous late-time radio emission from supernovae detected by the Karl G. Jansky Very Large Array Sky Survey (VLASS). STROH M.C., TERRERAN G., COPPEJANS D.L., et al.
2022MNRAS.511.3951F 54           X         1 3 28 The spins of compact objects born from helium stars in binary systems. FULLER J. and LU W.
2022ApJ...927...61K viz 941     A D     X C       21 46 1 Investigating the Observational Properties of Type Ib Supernova SN 2017iro. KUMAR B., SINGH A., SAHU D.K., et al.
2022MNRAS.512.1541G 242       D     X C F     4 162 ~ Metallicity estimation of core-collapse Supernova H II regions in galaxies within 30 Mpc. GANSS R., PLEDGER J.L., SANSOM A.E., et al.
2022MNRAS.512.3195Z 18       D               1 148 7 The Lick Observatory Supernova Search follow-up program: photometry data release of 70 SESNe. ZHENG W., STAHL B.E., DE JAEGER T., et al.
2022ApJ...928..151F 18       D               1 201 16 Statistical Properties of the Nebular Spectra of 103 Stripped-envelope Core-collapse Supernovae. FANG Q., MAEDA K., KUNCARAYAKTI H., et al.
2022ApJ...925..175S 287       D     X C       6 117 18 Carnegie Supernova Project-II: Near-infrared Spectroscopy of Stripped-envelope Core-collapse Supernovae. SHAHBANDEH M., HSIAO E.Y., ASHALL C., et al.
2022ApJ...925..216J 18       D               1 19 6 Effects of Winds on the Optical Properties of Type Ib and Ic Supernova Progenitors. JUNG M.-K., YOON S.-C. and KIM H.-J.
2022ApJ...930...31B 18       D               1 90 3 Characterization of Supernovae Based on the Spectral-Temporal Energy Distribution: Two Possible SN Ib Subtypes. BENGYAT O. and GAL-YAM A.
2022ApJ...931..153S 18       D               1 84 5 Constraints on the Explosion Timescale of Core-collapse Supernovae Based on Systematic Analysis of Light Curves. SAITO S., TANAKA M., SAWADA R., et al.
2022MNRAS.515.4302N 1541       D S   X C F     32 46 10 Dust masses for a large sample of core-collapse supernovae from optical emission line asymmetries: dust formation on 30-year time-scales. NICULESCU-DUVAZ M., BARLOW M.J., BEVAN A., et al.
2022MNRAS.516.4949S 47           X         1 3 6 On the diversity of magnetar-driven kilonovae. SARIN N., OMAND C.M.B., MARGALIT B., et al.
2022MNRAS.517.1750A 45           X         1 21 4 SN 2016iyc: a Type IIb supernova arising from a low-mass progenitor. ARYAN A., PANDEY S.B., ZHENG W., et al.
2022ApJ...941..107G 45           X         1 238 16 Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. GOMEZ S., BERGER E., NICHOLL M., et al.
2022ApJ...941L..32K 90             C       1 16 4 Late-time H/He-poor Circumstellar Interaction in the Type Ic Supernova SN 2021ocs: An Exposed Oxygen-Magnesium Layer and Extreme Stripping of the Progenitor. KUNCARAYAKTI H., MAEDA K., DESSART L., et al.
2023MNRAS.522..438S 47           X         1 5 ~ The implications of large binding energies of massive stripped core collapse supernova progenitors on the explosion mechanism. SHISHKIN D. and SOKER N.
2023A&A...673A.107O 1847   K A S   X C       38 14 6 Toward nebular spectral modeling of magnetar-powered supernovae. OMAND C.M.B. and JERKSTRAND A.
2023ApJ...950...44J 19       D               2 34 ~ Optical Color of Type Ib and Ic Supernovae and Implications for Their Progenitors. JIN H., YOON S.-C. and BLINNIKOV S.
2023A&A...674A.184L 47           X         1 15 8 The molecular chemistry of Type Ibc supernovae and diagnostic potential with the James Webb Space Telescope. LILJEGREN S., JERKSTRAND A., BARKLEM P.S., et al.
2023ApJ...955...71R 93           X         2 65 ~ The Iron Yield of Core-collapse Supernovae. RODRIGUEZ O., MAOZ D. and NAKAR E.
2024NatAs...8..111F 20       D               2 85 ~ An aspherical distribution for the explosive burning ash of core-collapse supernovae. FANG Q., MAEDA K., KUNCARAYAKTI H., et al.
2024Natur.625..253C 200           X         4 33 ~ A 12.4-day periodicity in a close binary system after a supernova. CHEN P., GAL-YAM A., SOLLERMAN J., et al.

goto View the references in ADS