SN 2008bk , the SIMBAD biblio

SN 2008bk , the SIMBAD biblio (140 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.19CEST18:50:33


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2008ATel.1448....1L 1 2 5 Astrometry and possible progenitor of SN 2008bk in NGC 7793. LI W., VAN DYK S.D., FILIPPENKO A.V., et al.
2008ATel.1452....1S 2 1 Supernova 2008bk in NGC 7793. STOCKDALE C.J., WEILER K.W., SODERBERG A., et al.
2008CBET.1315....1M 41 T       O X         2 14 Supernova 2008bk in NGC 7793. MONARD L.A.G.
2008ATel.1455....1S 1 1 Radio observations of SN 2008bk. SODERBERG A., CHANDRA P., STOCKDALE C., et al.
2008ATel.1464....1M 1 2 7 Near-IR photometry of possible progenitor of SN 2008bk. MAOZ D. and MANNUCCI F.
2008ATel.1465....1C 1 1 Radio observations of SN 2008bk. CHANDRA P., STOCKDALE C., WEILER K., et al.
2008CBET.1319....1L 39 T       O X         2 5 Supernova 2008bk in NGC 7793. LI W., VAN DYK S.D., FILIPPENKO A.V., et al.
2008CBET.1319....2P 39 T       O X         2 4 Supernova 2008bk in NGC 7793. PIGNATA G., MAZA J., HAMUY M., et al.
2008CBET.1335....1M 39 T       O X         4 9 Supernovae 2008bk and 2008br. MORRELL N. and STRITZINGER M.
2008A&A...491..507U 39           X         1 11 42 Progenitor mass of the type IIP supernova 2005cs. UTROBIN V.P. and CHUGAI N.N.
2008ApJ...688L..91M 1003 T K A S O X C       24 17 45 VLT detection of a red supergiant progenitor of the type II-P supernova 2008bk. MATTILA S., SMARTT S.J., ELDRIDGE J.J., et al.
2009ApJ...696..608H 41           X         1 3 20 The impact of neutrino magnetic moments on the evolution of massive stars. HEGER A., FRIEDLAND A., GIANNOTTI M., et al.
2009MNRAS.395.1409S viz 471       D S   X   F     11 294 620 The death of massive stars - I. Observational constraints on the progenitors of type II-P supernovae. SMARTT S.J., ELDRIDGE J.J., CROCKETT R.M., et al.
2009ApJ...705L.138P 43           X         1 8 84 EC-SNe from super-asymptotic giant branch progenitors: theoretical models versus observations. PUMO M.L., TURATTO M., BOTTICELLA M.T., et al.
2009ApJ...705.1364T viz 39           X         1 92 201 A new class of luminous transients and a first census of their massive stellar progenitors. THOMPSON T.A., PRIETO J.L., STANEK K.Z., et al.
2009ApJ...707.1578K 76           X         2 33 16 Stellar binary companions to supernova progenitors. KOCHANEK C.S.
2009ARA&A..47...63S 270           X C       6 81 964 Progenitors of Core-Collapse Supernovae. SMARTT S.J.
2011MNRAS.410.2767C 77           X         2 19 29 On the nature of the progenitors of three type II-p supernovae: 2004et, 2006my and 2006ov. CROCKETT R.M., SMARTT S.J., PASTORELLO A., et al.
2009MNSSA..68..231M 56 0 CCD activities at the Bronberg Observatory (CBA Pretoria) in 2008. MONARD B.
2011MNSSA..70...13M 58 0 100 not out! MONARD B.
2011MNRAS.414.2985D 46           X         1 11 176 Core-collapse explosions of Wolf–Rayet stars and the connection to type IIb/Ib/Ic supernovae. DESSART L., HILLIER D.J., LIVNE E., et al.
2011ApJ...738..154H 55       D     X         2 59 203 The cosmic core-collapse supernova rate does not match the massive-star formation rate. HORIUCHI S., BEACOM J.F., KOCHANEK C.S., et al.
2011MNRAS.417.1417F 308           X   F     7 34 80 SN 2009md: another faint supernova from a low-mass progenitor. FRASER M., ERGON M., ELDRIDGE J.J., et al.
2012AJ....143...19V 3584 T K A     X C F     90 23 64 Supernova 2008bk and its red supergiant progenitor. VAN DYK S.D., DAVIDGE T.J., ELIAS-ROSA N., et al.
2012MNRAS.419.2054W 94       D         F     3 27 88 Circumstellar dust as a solution to the red supergiant supernova progenitor problem. WALMSWELL J.J. and ELDRIDGE J.J.
2012ApJ...745...70P 77             C       1 33 16 SN 2008jb: a "Lost" core-collapse supernova in a star-forming dwarf galaxy at ∼10 mpc. PRIETO J.L., LEE J.C., DRAKE A.J., et al.
2012A&A...537A.132B 93       D     X         3 119 101 A comparison between star formation rate diagnostics and rate of core collapse supernovae within 11 mpc. BOTTICELLA M.T., SMARTT S.J., KENNICUTT R.C.Jr, et al.
2012A&A...538A.120L viz 15       D               1 5598 37 A unified supernova catalogue. LENNARZ D., ALTMANN D. and WIEBUSCH C.
2012MNRAS.420.3451M 1332       D S   X C F     32 13 34 Constraining the physical properties of type II-plateau supernovae using nebular phase spectra. MAGUIRE K., JERKSTRAND A., SMARTT S.J., et al.
2011A&ARv..19...43G 193           X C       4 78 169 Production of dust by massive stars at high redshift. GALL C., HJORTH J. and ANDERSEN A.C.
2012MNRAS.424..855K 39           X         1 28 50 SN 2009kn – the twin of the type IIn supernova 1994W. KANKARE E., ERGON M., BUFANO F., et al.
2012ApJ...756..111M 15       D               1 100 114 Core-collapse supernovae missed by optical surveys. MATTILA S., DAHLEN T., EFSTATHIOU A., et al.
2012ApJ...756..131V 40           X         1 30 61 The red supergiant progenitor of supernova 2012aw (PTF12bvh) in Messier 95. VAN DYK S.D., CENKO S.B., POZNANSKI D., et al.
2012A&A...546A..28J 43           X         1 18 144 The progenitor mass of the type IIP supernova SN 2004et from late-time spectral modeling. JERKSTRAND A., FRANSSON C., MAGUIRE K., et al.
2012ApJ...761...63P 15       D               1 24 26 Gravitational waves from fallback accretion onto neutron stars. PIRO A.L. and THRANE E.
2013MNRAS.428.1927C 94       D     X         3 330 52 On the association between core-collapse supernovae and HII regions. CROWTHER P.A.
2012MmSAI..83..388H 232       S   X         5 5 5 The CHilean Automatic Supernova sEarch. HAMUY M., PIGNATA G., MAZA J., et al.
2013ApJ...767....3D 236           X C       5 28 138 The temperatures of red supergiants. DAVIES B., KUDRITZKI R.-P., PLEZ B., et al.
2013ApJ...767...52K 16       D               1 64 12 Finding η Car analogs in nearby galaxies using Spitzer. I. Candidate selection. KHAN R., STANEK K.Z. and KOCHANEK C.S.
2013ApJ...769..113H 16       D               1 39 21 Effects of stellar rotation on star formation rates and comparison to core-collapse supernova rates. HORIUCHI S., BEACOM J.F., BOTHWELL M.S., et al.
2013ApJ...772L..32V 41           X         1 10 57 The progenitor of supernova 2011dh has vanished. VAN DYK S.D., ZHENG W., CLUBB K.I., et al.
2013AJ....146...24V 803 T K A     X C       19 21 16 An echo of supernova
2008bk.
VAN DYK S.D.
2013AJ....146...31K 367       D S   X C       8 34 35 Integral field spectroscopy of supernova explosion sites: constraining the mass and metallicity of the progenitors. II. Type II-p and II-l supernovae. KUNCARAYAKTI H., DOI M., ALDERING G., et al.
2013MNRAS.436..774E viz 16       D               1 250 249 The death of massive stars - II. Observational constraints on the progenitors of type Ibc supernovae. ELDRIDGE J.J., FRASER M., SMARTT S.J., et al.
2013MNRAS.436.3224P 172       D     X   F     4 26 30 An emerging coherent picture of red supergiant supernova explosions. POZNANSKI D.
2014A&A...561A.146S viz 197           X C       4 28 45 Optical and near-IR observations of the faint and fast 2008ha-like supernova 2010ae. STRITZINGER M.D., HSIAO E., VALENTI S., et al.
2014MNRAS.438..368T 40           X         1 18 46 SN 2009N: linking normal and subluminous Type II-P SNe. TAKATS K., PUMO M.L., ELIAS-ROSA N., et al.
2014MNRAS.438..938M 40           X         1 16 33 A late-time view of the progenitors of five Type IIP supernovae. MAUND J.R., REILLY E. and MATTILA S.
2014MNRAS.438.1577M 2794 T K A D S   X C F     68 11 33 A new precise mass for the progenitor of the Type IIP
SN
2008bk
.
MAUND J.R., MATTILA S., RAMIREZ-RUIZ E., et al.
2014MNRAS.439.2873S 135       D     X         4 40 125 Low luminosity Type II supernovae - II. Pointing towards moderate mass precursors. SPIRO S., PASTORELLO A., PUMO M.L., et al.
2014ApJ...786...67A 409       D     X C       10 234 250 Characterizing the V-band light-curves of hydrogen-rich type II supernovae. ANDERSON J.P., GONZALEZ-GAITAN S., HAMUY M., et al.
2014ApJ...786L..15G 16       D               1 110 45 Hα spectral diversity of type II supernovae: correlations with photometric properties. GUTIERREZ C.P., ANDERSON J.P., HAMUY M., et al.
2014MNRAS.440.1917D 16       D               3 32 57 On the lack of X-ray bright Type IIP supernovae. DWARKADAS V.V.
2014MNRAS.441..671A 158             C F     2 10 26 Analysis of blueshifted emission peaks in Type II supernovae. ANDERSON J.P., DESSART L., GUTIERREZ C.P., et al.
2014ApJ...791..105W viz 134       D     X C       3 40 37 Constraints for the progenitor masses of 17 historic core-collapse supernovae. WILLIAMS B.F., PETERSON S., MURPHY J., et al.
2014MNRAS.442....2K 275           X C       6 30 5 Broad-band polarimetric follow-up of Type IIP SN 2012aw. KUMAR B., PANDEY S.B., ESWARAIAH C., et al.
2015A&A...573A...2S viz 80             C       2 23 85 Comprehensive observations of the bright and energetic Type Iax SN 2012Z: Interpretation as a Chandrasekhar mass white dwarf explosion. STRITZINGER M.D., VALENTI S., HOEFLICH P., et al.
2015ApJ...799..215P viz 175       D     X         5 53 38 A global model of the light curves and expansion velocities of Type II-Plateau supernovae. PEJCHA O. and PRIETO J.L.
2015MNRAS.447.3207M 238           X         6 15 23 Whatever happened to the progenitors of supernovae 2008cn, 2009kr and 2009md? MAUND J.R., FRASER M., REILLY E., et al.
2012ATel.4033....1L 40           X         1 3 7 Early-time polarization of the Type II-Plateau Supernova SN 2012aw. LEONARD D.C., PIGNATA G., DESSART L., et al.
2015ApJ...805...71D 40           X         1 21 13 Detection of a light echo from the otherwise normal SN 2007af. DROZDOV D., LEISING M.D., MILNE P.A., et al.
2015ApJ...806..195V 24 5 LEGUS discovery of a light echo around supernova 2012aw. VAN DYK S.D., LEE J.C., ANDERSON J., et al.
2015MNRAS.452.2597X 16       D               1 33 12 Core-collapse supernova rate synthesis within 11 Mpc. XIAO L. and ELDRIDGE J.J.
2015ApJ...815..121D 16       D               1 57 20 A Hubble diagram from Type II supernovae based solely on photometry: the photometric color method. DE JAEGER T., GONZALEZ-GAITAN S., ANDERSON J.P., et al.
2016MNRAS.456.3157K 281           X C       6 39 8 Broad-band polarimetric investigation of the Type II-plateau supernova 2013ej. KUMAR B., PANDEY S.B., ESWARAIAH C., et al.
2016A&A...589A.110A viz 16       D               2 217 17 Type II supernovae as probes of environment metallicity: observations of host H II regions. ANDERSON J.P., GUTIERREZ C.P., DESSART L., et al.
2017ApJ...834...60Y 57       D     X         2 33 17 Interstellar-medium mapping in M82 through light echoes around supernova 2014J. YANG Y., WANG L., BAADE D., et al.
2017ApJ...835..166D viz 16       D               1 89 18 A Type II supernova Hubble diagram from the CSP-I, SDSS-II, and SNLS surveys. DE JAEGER T., GONZALEZ-GAITAN S., HAMUY M., et al.
2017MNRAS.466...34L 2706 T K A     X C       65 6 11 A study of the low-luminosity Type II-Plateau supernova 2008bk. LISAKOV S.M., DESSART L., HILLIER D.J., et al.
2017MNRAS.464.3013P 975   K A D     X C F     23 30 11 Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae. PUMO M.L., ZAMPIERI L., SPIRO S., et al.
2017MNRAS.470.1642F 51           X         1 14 147 Pre-supernova outbursts via wave heating in massive stars - I. Red supergiants. FULLER J.
2017ApJ...847...88Z 41           X         1 25 2 The Araucaria Project. The distance to the Sculptor Group galaxy NGC 7793 from near-infrared photometry of Cepheid variables. ZGIRSKI B., GIEREN W., PIETRZYNSKI G., et al.
2017MNRAS.469.2202M 609     A D S   X C       14 30 28 The resolved stellar populations around 12 Type IIP supernovae. MAUND J.R.
2017ApJ...850...89G 301       D     X         8 252 84 Type II supernova spectral diversity. I. Observations, sample characterization, and spectral line evolution. GUTIERREZ C.P., ANDERSON J.P., HAMUY M., et al.
2017ApJ...850...90G 138       D     X         4 124 51 Type II supernova spectral diversity. II. Spectroscopic and photometric correlations. GUTIERREZ C.P., ANDERSON J.P., HAMUY M., et al.
2017MNRAS.471.3283K 41           X         1 23 6 Dust formation and the binary companions of supernovae. KOCHANEK C.S.
2018MNRAS.474.2116D 182       D     X         5 58 97 The initial masses of the red supergiant progenitors to Type II supernovae. DAVIES B. and BEASOR E.R.
2018MNRAS.475..277J 2000   K A S   X C F     46 24 11 Emission line models for the lowest mass core-collapse supernovae - I. Case study of a 9 M one-dimensional neutrino-driven explosion. JERKSTRAND A., ERTL T., JANKA H.-T., et al.
2018MNRAS.475.1937T 123           X   F     2 27 11 SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events. TOMASELLA L., CAPPELLARO E., PUMO M.L., et al.
2018MNRAS.475.3959H 16       D               1 26 18 SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant. HUANG F., WANG X.-F., HOSSEINZADEH G., et al.
2018MNRAS.476.4592D 58       D     X         2 75 11 Observed Type II supernova colours from the Carnegie Supernova Project-I. DE JAEGER T., ANDERSON J.P., GALBANY L., et al.
2018ApJ...859...78N 41           X         1 22 10 The low-luminosity Type IIP Supernova 2016bkv with early-phase circumstellar interaction. NAKAOKA T., KAWABATA K.S., MAEDA K., et al.
2018A&A...613A..35K 16       D               3 171 55 Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy. KUNCARAYAKTI H., ANDERSON J.P., GALBANY L., et al.
2018ApJ...860...39W viz 82           X         2 31 17 Constraints for the progenitor masses of historic core-collapse supernovae. WILLIAMS B.F., HILLIS T.J., MURPHY J.W., et al.
2018MNRAS.473.1633K 41           X         1 17 16 Cas A and the Crab were not stellar binaries at death. KOCHANEK C.S.
2018MNRAS.473.3863L 1580   K   D S   X C F     36 83 13 Progenitors of low-luminosity Type II-Plateau supernovae. LISAKOV S.M., DESSART L., HILLIER D.J., et al.
2018MNRAS.479.3232G 16       D               3 254 15 Type II supernovae in low-luminosity host galaxies. GUTIERREZ C.P., ANDERSON J.P., SULLIVAN M., et al.
2018A&A...619A..30D 126           X         3 3 10 Impact of clumping on core-collapse supernova radiation. DESSART L., HILLIER D.J. and WILK K.D.
2018MNRAS.481.2536K 41           X         1 20 14 The dusty progenitor star of the Type II supernova 2017eaw. KILPATRICK C.D. and FOLEY R.J.
2019A&A...622L...1O 42           X         1 20 6 A progenitor candidate for the type II-P supernova SN 2018aoq in NGC 4151. O'NEILL D., KOTAK R., FRASER M., et al.
2019A&A...622A..70D 251           X C       5 11 5 Supernovae from blue supergiant progenitors: What a mess! DESSART L. and HILLIER D.J.
2019A&A...622A..74J 87           X         2 14 46 Remnants and ejecta of thermonuclear electron-capture supernovae. Constraining oxygen-neon deflagrations in high-density white dwarfs. JONES S., ROPKE F.K., FRYER C., et al.
2019A&A...626A..57H 251           X         6 26 ~ Upper limits on very-high-energy gamma-ray emission from core-collapse supernovae observed with H.E.S.S. HESS COLLABORATION, ABDALLA H., AHARONIAN F., et al.
2019MNRAS.489..641M 17       D               1 42 ~ A comparison of explosion energies for simulated and observed core-collapse supernovae. MURPHY J.W., MABANTA Q. and DOLENCE J.C.
2019A&A...629A.124M 125     A D S   X C       2 15 ~ Mass discrepancy analysis for a select sample of Type II-Plateau supernovae. MARTINEZ L. and BERSTEN M.C.
2019A&A...631A...5Z 47           X         1 6 35 The diverse lives of progenitors of hydrogen-rich core-collapse supernovae: the role of binary interaction. ZAPARTAS E., DE MINK S.E., JUSTHAM S., et al.
2019A&A...631A...8H 44           X         1 19 38 Photometric and spectroscopic diversity of Type II supernovae. HILLIER D.J. and DESSART L.
2020MNRAS.494L..53F 17       D               1 19 ~ The uncertain masses of progenitors of core-collapse supernovae and direct-collapse black holes. FARRELL E.J., GROH J.H., MEYNET G., et al.
2020MNRAS.496.3402D 232       D     X C       5 23 56 A measurement of the Hubble constant from Type II supernovae. DE JAEGER T., STAHL B.E., ZHENG W., et al.
2020MNRAS.496.3725J 17       D               1 18 ~ A low-luminosity core-collapse supernova very similar to SN 2005cs. JAGER Z., VINKO J., BIRO B.I., et al.
2020MNRAS.497..361M 443       D     X   F     10 44 ~ The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio. MULLER-BRAVO T.E., GUTIERREZ C.P., SULLIVAN M., et al.
2020A&A...641A.177M viz 17       D               1 288 ~ Stripped-envelope core-collapse supernova 56Ni masses. Persistently larger values than supernovae type II. MEZA N. and ANDERSON J.P.
2020ApJ...902..139K viz 43           X         1 22 5 Direct evidence of two-component ejecta in Supernova 2016gkg from nebular spectroscopy. KUNCARAYAKTI H., FOLATELLI G., MAEDA K., et al.
2020A&A...642A.143M 571       D     X C F     12 12 13 Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods. MARTINEZ L., BERSTEN M.C., ANDERSON J.P., et al.
2021MNRAS.501.1059R 609           X C F     12 24 ~ Low-luminosity Type II supernovae - III. SN 2018hwm, a faint event with an unusually long plateau. REGUITTI A., PUMO M.L., MAZZALI P.A., et al.
2021A&A...645L...7O 592 T   A     X C       12 9 ~ Revisiting the progenitor of the low-luminosity type II-plateau supernova,
SN 2008bk.
O'NEILL D., KOTAK R., FRASER M., et al.
2021A&A...645A...6Z 104       D         F     6 34 29 Effect of binary evolution on the inferred initial and final core masses of hydrogen-rich, Type II supernova progenitors. ZAPARTAS E., DE MINK S.E., JUSTHAM S., et al.
2021ApJ...908...75B 17       D               1 556 32 The radio luminosity-risetime function of core-collapse supernovae. BIETENHOLZ M.F., BARTEL N., ARGO M., et al.
2021MNRAS.503..797K 87           X         2 12 ~ Synthetic observables for electron-capture supernovae and low-mass core collapse supernovae. KOZYREVA A., BAKLANOV P., JONES S., et al.
2021MNRAS.505.1742R 583       D     X   F     13 264 9 The iron yield of normal Type II supernovae. RODRIGUEZ O., MEZA N., PINEDA-GARCIA J., et al.
2021A&A...651A..19D 87           X         2 16 ~ Multiepoch VLT-FORS spectropolarimetric observations of supernova 2012aw reveal an asymmetric explosion. DESSART L., LEONARD D.C., HILLIER D.J., et al.
2021MNRAS.506..781D 17       D               1 44 7 Progenitor mass distribution for 22 historic core-collapse supernovae. DIAZ-RODRIGUEZ M., MURPHY J.W., WILLIAMS B.F., et al.
2021A&A...652A..64D 262     A D     X C       6 14 16 The explosion of 9-29 M stars as Type II supernovae: Results from radiative-transfer modeling at one year after explosion. DESSART L., HILLIER D.J., SUKHBOLD T., et al.
2021MNRAS.507.3726D 44           X         1 13 ~ The origins of low-luminosity supernovae: the case of SN 2016bkv. DECKERS M., GROH J.H., BOIAN I., et al.
2021A&A...654A.157C viz 44           X         1 41 17 Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions. CAI Y.-Z., PASTORELLO A., FRASER M., et al.
2021A&A...655A..90Y viz 17       D               1 53 13 A low-energy explosion yields the underluminous Type IIP SN 2020cxd. YANG S., SOLLERMAN J., STROTJOHANN N.L., et al.
2022AJ....163...14B viz 18       D               1 285 ~ Galaxian contamination in Galactic reddening maps. BROWN P.J. and WALKER T.
2022MNRAS.509.2013Z 90             C       1 26 7 SN 2018hfm: a low-energy Type II supernova with prominent signatures of circumstellar interaction and dust formation. ZHANG X., WANG X., SAI H., et al.
2021ApJ...923...86C viz 17       D               1 813 3 Local environments of low-redshift supernovae. CRONIN S.A., UTOMO D., LEROY A.K., et al.
2022A&A...660A..40M 332       D     X         8 147 6 Type II supernovae from the Carnegie Supernova Project-I. I. Bolometric light curves of 74 SNe II using uBgVriYJH photometry. MARTINEZ L., BERSTEN M.C., ANDERSON J.P., et al.
2022A&A...660A..41M 376       D     X         9 86 16 Type II supernovae from the Carnegie Supernova Project-I. II. Physical parameter distributions from hydrodynamical modelling. MARTINEZ L., BERSTEN M.C., ANDERSON J.P., et al.
2022MNRAS.513.4983V 224           X C F     3 24 9 Low luminosity Type II supernovae - IV. SN 2020cxd and SN 2021aai, at the edges of the sub-luminous supernovae class. VALERIN G., PUMO M.L., PASTORELLO A., et al.
2022MNRAS.514.4173K 92           X         2 6 13 Low-luminosity type IIP supermnovae: SN 2005cs and SN 2020cxd as very low-energy iron core-collapse explosions. KOZYREVA A., JANKA H.-T., KRESSE D., et al.
2022MNRAS.514.4620D 109       D     X         3 26 26 A 5 per cent measurement of the Hubble-Lemaitre constant from Type II supernovae. DE JAEGER T., GALBANY L., RIESS A.G., et al.
2022MNRAS.514.5686P 18       D               2 87 9 Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. PRENTICE S.J., MAGUIRE K., SIEBENALER L., et al.
2022ApJ...934...67B 225           X C       4 11 14 Connecting the Light Curves of Type IIP Supernovae to the Properties of Their Progenitors. BARKER B.L., HARRIS C.E., WARREN M.L., et al.
2022MNRAS.515..897R 466       D     X   F     10 122 8 Luminosity distribution of Type II supernova progenitors. RODRIGUEZ O.
2022MNRAS.517.1483D 90               F     2 17 12 Explosion imminent: the appearance of red supergiants at the point of core-collapse. DAVIES B., PLEZ B. and PETRAULT M.
2022AJ....164..250L 45           X         1 30 ~ Toward the Automated Detection of Light Echoes in Synoptic Surveys: Considerations on the Application of Deep Convolutional Neural Networks. LI X., BIANCO F.B., DOBLER G., et al.
2023ApJ...944..110M 112       D     X         3 110 4 Comparing the Locations of Supernovae to CO (2-1) Emission in Their Host Galaxies. MAYKER CHEN N., LEROY A.K., LOPEZ L.A., et al.
2023ApJ...949L..12A 19       D               1 56 3 Constraining High-energy Neutrino Emission from Supernovae with IceCube. ABBASI R., ACKERMANN M., ADAMS J., et al.
2023MNRAS.519..471V 93           X         2 41 8 The disappearances of six supernova progenitors. VAN DYK S.D., DE GRAW A., BAER-WAY R., et al.
2023ApJ...952L..23K 47           X         1 27 ~ SN 2023ixf in Messier 101: A Variable Red Supergiant as the Progenitor Candidate to a Type II Supernova. KILPATRICK C.D., FOLEY R.J., JACOBSON-GALAN W.V., et al.
2023MNRAS.524.2186V 140           X C       2 13 ~ Identifying the SN 2022acko progenitor with JWST. VAN DYK S.D., BOSTROEM K.A., ZHENG W., et al.
2023ApJ...953L..18B 47           X         1 17 ~ SN 2022acko: The First Early Far-ultraviolet Spectra of a Type IIP Supernova. BOSTROEM K.A., DESSART L., HILLIER D.J., et al.
2023A&A...677A..28P viz 47           X         1 87 ~ A characterization of ASAS-SN core-collapse supernova environments with VLT+MUSE I. Sample selection, analysis of local environments, and correlations with light curve properties. PESSI T., PRIETO J.L., ANDERSON J.P., et al.
2023A&A...678A..43N 952       D S   X C       19 37 ~ Spectropolarimetry of Type II supernovae I. Sample, observational data, and interstellar polarization. NAGAO T., MATTILA S., KOTAK R., et al.
2024ApJ...960...72S 20       D               1 94 ~ Search for Supernova Progenitor Stars with ZTF and LSST. STROTJOHANN N.L., OFEK E.O., GAL-YAM A., et al.
2024A&A...681A..11N 870       D S   X C F     15 15 ~ Spectropolarimetry of Type II supernovae II. Intrinsic supernova polarization and its relation to photometric and spectroscopic properties. NAGAO T., PATAT F., CIKOTA A., et al.
2024ApJ...964L..27S 20       D               1 37 ~ A Bias-corrected Luminosity Function for Red Supergiant Supernova Progenitor Stars. STROTJOHANN N.L., OFEK E.O. and GAL-YAM A.

goto View the references in ADSLimited to 100