SDSS J010013.02+280225.8 , the SIMBAD biblio

SDSS J010013.02+280225.8 , the SIMBAD biblio (114 results) C.D.S. - SIMBAD4 rel 1.8 - 2023.03.23CET22:37:25

Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2015Natur.518..512W 94 3 282 An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. WU X.-B., WANG F., FAN X., et al.
2015ApJ...805L...8B 45           X         1 4 23 Bright [C II] 158 µm emission in a quasar host galaxy at z = 6.54. BANADOS E., DECARLI R., WALTER F., et al.
2015ApJ...805...90T viz 40           X         1 146 71 The most luminous galaxies discovered by WISE. TSAI C.-W., EISENHARDT P.R.M., WU J., et al.
2015ApJ...806..142Z 40           X         1 29 8 Characteristics of He II proximity profiles. ZHENG W., SYPHERS D., MEIKSIN A., et al.
2015MNRAS.451L..16C 44           X         1 8 34 Two bright z > 6 quasars from VST ATLAS and a new method of optical plus mid-infrared colour selection. CARNALL A.C., SHANKS T., CHEHADE B., et al.
2015ApJ...807L...9W 289           X C       6 3 24 An ultra-luminous quasar at z = 5.363 with a ten billion solar mass black hole and a metal-rich DLA at z ∼ 5. WANG F., WU X.-B., FAN X., et al.
2015MNRAS.451.2174T 83           X         2 2 7 Early cosmic merger of multiple black holes. TAGAWA H., UMEMURA M., GOUDA N., et al.
2016ApJ...819...24W viz 260       D     X C       6 796 26 A survey of luminous high-redshift quasars with SDSS and WISE. I. Target selection and optical spectroscopy. WANG F., WU X.-B., FAN X., et al.
2016ApJ...823L..37A 1610 T K A     X C       38 3 8 Exploratory Chandra observation of the ultraluminous quasar
SDSS J010013.02+280225.8 at redshift 6.30.
AI Y., DOU L., FAN X., et al.
2016AstL...42..295B 1 5 7 Observational capabilities of the new medium- and low-resolution spectrograph at the 1.6-m telescope of the Sayan Observatory. BURENIN R.A., AMVROSOV A.L., ESELEVICH M.V., et al.
2016MNRAS.459.2014L 81           X         2 7 6 General polytropic self-gravitating cylinder free-fall and accreting mass string with a chain of collapsed objects. LOU Y.-Q. and HU X.-Y.
2016ApJ...828...26M 43           X         1 25 64 Subaru high-z exploration of low-luminosity quasars (SHELLQs). I. Discovery of 15 quasars and bright galaxies at 5.7 < z < 6.9. MATSUOKA Y., ONOUE M., KASHIKAWA N., et al.
2016ApJ...828..110I 45           X         1 2 9 Is there a maximum mass for black holes in galactic nuclei? INAYOSHI K. and HAIMAN Z.
2016ApJ...830...53W 1328   K A     X C       32 5 22 Probing the interstellar medium and star formation of the most luminous quasar at z = 6.3. WANG R., WU X.-B., NERI R., et al.
2016MNRAS.462.3812T 82           X         2 7 7 Mergers of accreting stellar-mass black holes. TAGAWA H., UMEMURA M. and GOUDA N.
2016ApJ...833..222J 98       D     X         3 52 64 The final SDSS high-redshift quasar sample of 52 quasars at z>5.7. JIANG L., McGREER I.D., FAN X., et al.
2017ApJ...835L..20W 848   K A     X C       20 8 2 Milliarcsecond imaging of the radio emission from the quasar with the most massive black hole at reionization. WANG R., MOMJIAN E., CARILLI C.L., et al.
2017MNRAS.465.1401S 46           X         1 2 10 What produces the far-infrared/submillimetre emission in the most luminous QSOs? SYMEONIDIS M.
2017ApJ...836L...1T 535     A D     X C       13 21 13 On the accretion rates and radiative efficiencies of the highest-redshift quasars. TRAKHTENBROT B., VOLONTERI M. and NATARAJAN P.
2017ApJ...840...24E 757       D S   X C       17 35 30 Implications of z ∼ 6 quasar proximity zones for the epoch of reionization and quasar lifetimes. EILERS A.-C., DAVIES F.B., HENNAWI J.F., et al.
2017MNRAS.466.3323L 82           X         2 11 1 A new method to measure the virial factors in the reverberation mapping of active galactic nuclei. LIU H.T., FENG H.C. and BAI J.M.
2017RAA....17...52G 41           X         1 61 ~ Weak gravitational lensing of quantum perturbed lukewarm black holes and cosmological constant effect. GHAFFARNEJAD H. and MOJAHEDI M.A.
2017ApJ...845..154V 83           X         2 15 15 Molecular gas in three z ∼ 7 quasar host galaxies. VENEMANS B.P., WALTER F., DECARLI R., et al.
2017A&A...603A.128N 453     A D     X C       11 30 14 The X-ray properties of z ∼ 6 luminous quasars. NANNI R., VIGNALI C., GILLI R., et al.
2017ApJ...846..129F 181       D     X C       4 6 2 Unseen progenitors of luminous high-z quasars in the Rh = ct universe. FATUZZO M. and MELIA F.
2017MNRAS.470.1587A 2206 T K A S   X C F     50 6 1 XMM-Newton observation of the ultraluminous quasar
SDSS J010013.02+280225.8 at redshift 6.326.
AI Y., FABIAN A.C., FAN X., et al.
2017ApJ...850..108W 124           X C       2 9 12 A wide dispersion in star formation rate and dynamical mass of 108 solar mass black hole host galaxies at redshift 6. WILLOTT C.J., BERGERON J. and OMONT A.
2018Natur.553..473B 99 3 297 An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. BANADOS E., VENEMANS B.P., MAZZUCCHELLI C., et al.
2018ApJ...854...97D 17       D               1 50 18 An ALMA [C II] survey of 27 quasars at z > 5.94. DECARLI R., WALTER F., VENEMANS B.P., et al.
2018MNRAS.474.2757H 51           X         1 2 18 The evolution of supermassive Population III stars. HAEMMERLE L., WOODS T.E., KLESSEN R.S., et al.
2018MNRAS.474.3825V 44           X         1 2 4 Chasing the observational signatures of seed black holes at z > 7: candidate statistics. VALIANTE R., SCHNEIDER R., GRAZIANI L., et al.
2018A&A...612A..59C 42           X         1 5 3 How to constrain mass and spin of supermassive black holes through their disk emission. CAMPITIELLO S., GHISELLINI G., SBARRATO T., et al.
2018MNRAS.477.3694B 125           X         3 3 1 Maximally rotating supermassive stars at the onset of collapse: the perturbative effects of gas pressure, magnetic fields, dark matter, and dark energy. BUTLER S.P., LIMA A.R., BAUMGARTE T.W., et al.
2018MNRAS.477.5382B 69     A     X         2 2 5 The most massive galaxies and black holes allowed by ΛCDM. BEHROOZI P. and SILK J.
2018MNRAS.478.1649C 42           X         1 14 1 Two more, bright, z > 6 quasars from VST ATLAS and WISE. CHEHADE B., CARNALL A.C., SHANKS T., et al.
2018AJ....156...66M 17       D               1 14 1 Revealing the warm and hot halo baryons via Thomson scattering of quasar light. MAS-RIBAS L. and HENNAWI J.F.
2018A&A...615A.113M 42           X         1 5 1 J1342+0928 supports the timeline in the Rh = ct cosmology. MELIA F.
2018ApJ...864...53E 268       D     X         7 49 6 The opacity of the intergalactic medium measured along quasar sightlines at z ∼ 6. EILERS A.-C., DAVIES F.B. and HENNAWI J.F.
2018MNRAS.479.1055B 100       D         F     6 60 14 New constraints on Lyman-α opacity with a sample of 62 quasars at z > 5.7. BOSMAN S.E.I., FAN X., JIANG L., et al.
2018MNRAS.479.2079C 128           X   F     2 4 12 Quenching star formation with quasar outflows launched by trapped IR radiation. COSTA T., ROSDAHL J., SIJACKI D., et al.
2018ApJ...866..159V 17       D               1 98 1 Dust emission in an accretion-rate-limited sample of z >= 6 quasars. VENEMANS B.P., DECARLI R., WALTER F., et al.
2018ApJ...867...30E 43           X         1 2 2 First spectroscopic study of a young quasar. EILERS A.-C., HENNAWI J.F. and DAVIES F.B.
2018ApJ...868...15T 125           X C       2 9 ~ Super-Eddington accretion in the WISE-selected extremely luminous infrared galaxy W2246-0526. TSAI C.-W., EISENHARDT P.R.M., JUN H.D., et al.
2018A&A...619A..39F 42           X         1 4 ~ The dense molecular gas in the z ∼ 6 QSO SDSS J231038.88+185519.7 resolved by ALMA. FERUGLIO C., FIORE F., CARNIANI S., et al.
2018ApJ...869..150M 17       D               1 111 ~ Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). V. Quasar luminosity function and contribution to cosmic reionization at z = 6. MATSUOKA Y., STRAUSS M.A., KASHIKAWA N., et al.
2019ApJ...870L..11F 128           X C       2 8 ~ The discovery of a gravitationally lensed quasar at z = 6.51. FAN X., WANG F., YANG J., et al.
2019MNRAS.483...19M 187       D     X C       4 26 ~ The role of galaxies and AGNs in reionizing the IGM - II. Metal-tracing the faint sources of reionization at 5 <= z <= 6. MEYER R.A., BOSMAN S.E.I., KAKIICHI K., et al.
2019MNRAS.484.5142P 43           X         1 7 ~ A new bright z = 6.82 quasar discovered with VISTA: VHS J0411-0907. PONS E., McMAHON R.G., SIMCOE R.A., et al.
2019ApJ...872L..29S 85             C       1 26 ~ Black versus dark: rapid growth of supermassive black holes in dark matter halos at z ∼ 6. SHIMASAKU K. and IZUMI T.
2019MNRAS.487.3305M viz 17       D               1 230 ~ New constraints on quasar evolution: broad-line velocity shifts over 1.5 <= z <= 7.5. MEYER R.A., BOSMAN S.E.I. and ELLIS R.S.
2019ApJ...879..117K 17       D               1 52 ~ High star formation rates of low Eddington ratio quasars at z >= 6. KIM Y. and IM M.
2019ApJ...880....2W 3405   K A D S   X C       79 7 ~ Spatially resolved interstellar medium and highly excited dense molecular gas in the most luminous quasar at z = 6.327. WANG F., WANG R., FAN X., et al.
2019ApJ...880...77O 213           X C       4 13 ~ Subaru high-z exploration of low-luminosity quasars (SHELLQs). VI. Black hole mass Measurements of six quasars at 6.1 <= z <= 6.7. ONOUE M., KASHIKAWA N., MATSUOKA Y., et al.
2019ApJ...880..153Y 85             C       1 11 ~ Far-infrared properties of the bright, gravitationally lensed quasar J0439+1634 at z = 6.5. YANG J., VENEMANS B., WANG F., et al.
2019ApJ...881...23E 17       D               2 19 ~ Anomaly in the opacity of the post-reionization intergalactic medium in the Lyα and Lyβ forest. EILERS A.-C., HENNAWI J.F., DAVIES F.B., et al.
2019MNRAS.488.4195D 85           X         2 4 ~ Maximally rotating supermassive stars at the onset of collapse: effects of gas pressure. DENNISON K.A., BAUMGARTE T.W. and SHAPIRO S.L.
2019ApJ...882...77C 1362   K A D S   X C       31 73 ~ Heavy element absorption systems at 5.0 < z < 6.8: metal-poor neutral gas and a diminishing signature of highly ionized circumgalactic matter. COOPER T.J., SIMCOE R.A., COOKSEY K.L., et al.
2019ApJ...883..163B viz 17       D               1 199 ~ The evolution of O I over 3.2 < z < 6.5: reionization of the circumgalactic medium. BECKER G.D., PETTINI M., RAFELSKI M., et al.
2019A&A...630A.118V 17       D     X         1 28 ~ The X-ray properties of z > 6 quasars: no evident evolution of accretion physics in the first Gyr of the Universe. VITO F., BRANDT W.N., BAUER F.E., et al.
2019A&A...631A.120S 128           X C       2 53 ~ Quasars as standard candles II. The non-linear relation between UV and X-ray emission at high redshifts. SALVESTRINI F., RISALITI G., BISOGNI S., et al.
2019MNRAS.490.2542P 85           X         2 24 ~ Unveiling the weak radio quasar population at z≥4. PERGER K., FREY S., GABANYI K.E., et al.
2019MNRAS.490.4502V 170           X C       3 11 ~ Impact of X-rays on CO emission from high-z galaxies. VALLINI L., TIELENS A.G.G.M., PALLOTTINI A., et al.
2019ApJ...887..174V 128           X         3 3 ~ Submillimeter signatures from growing supermassive black holes before reionization. VASILIEV E.O. and SHCHEKINOV Y.A.
2019ApJ...887..196F viz 230       D     X         6 177 ~ The REQUIEM survey. I. A search for extended Lyα nebular emission around 31 z > 5.7 quasars. FARINA E.P., ARRIGONI-BATTAIA F., COSTA T., et al.
2019PASJ...71..109H 85             C       1 25 ~ Detections of [O III] 88 μm in two quasars in the reionization epoch. HASHIMOTO T., INOUE A.K., TAMURA Y., et al.
2020MNRAS.491.1970W 44           X         1 36 ~ Ultra-luminous quasars at redshift z > 4.5 from SkyMapper. WOLF C., HON W.J., BIAN F., et al.
2020ApJ...889...52P 940     A     X         22 1 ~ Reality or mirage? Observational test and implications for the claimed extremely magnified quasar at z=6.3. PACUCCI F. and LOEB A.
2020ApJ...889..162L 522           X C       11 15 ~ Probing the full CO spectral line energy distribution (SLED) in the nuclear region of a quasar-starburst system at z = 6.003. LI J., WANG R., RIECHERS D., et al.
2020ApJ...891...64F 1680 T   A     X C       37 6 ~ Truth or delusion? A possible gravitational lensing interpretation of the ultraluminous quasar
SDSS J010013.02+280225.8 at z = 6.30.
2020MNRAS.494..789R 348           X C F     6 17 ~ The near and mid-infrared photometric properties of known redshift z >= 5 quasars. ROSS N.P. and CROSS N.J.G.
2020ApJ...895...74N 17       D               1 41 ~ ALMA observations of quasar host galaxies at z ≃ 4.8. NGUYEN N.H., LIRA P., TRAKHTENBROT B., et al.
2020MNRAS.494.5091G 61       D     X         2 6 ~ Probing the thermal state of the intergalactic medium at z > 5 with the transmission spikes in high-resolution Ly α forest spectra. GAIKWAD P., RAUCH M., HAEHNELT M.G., et al.
2020ApJ...897L..14Y 87             C       1 5 ~ Poniua'ena: a luminous z > 7.5 quasar hosting a 1.5 billion solar mass black hole. YANG J., WANG F., FAN X., et al.
2020MNRAS.496.2309O 44           X         1 9 ~ A thirty-four billion solar mass black hole in SMSS J2157-3602, the most luminous known quasar. ONKEN C.A., BIAN F., FAN X., et al.
2020ApJ...900...12L 496       D     X         12 53 ~ SCUBA2 High rEdshift bRight quasaR surveY: far-infrared properties and weak-line features. LI Q., WANG R., FAN X., et al.
2020A&A...642A.150L viz 17       D               2 2429 ~ Quasars as standard candles. III. Validation of a new sample for cosmological studies. LUSSO E., RISALITI G., NARDINI E., et al.
2020ApJ...903...60I 131           X C       2 39 ~ Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). XI. Proximity zone analysis for faint quasar spectra at z ∼ 6. ISHIMOTO R., KASHIKAWA N., ONOUE M., et al.
2020ApJ...904...26Y 366       D     X         9 32 ~ Measurements of the z ∼ 6 intergalactic medium optical depth and transmission spikes using a new z > 6.3 quasar sample. YANG J., WANG F., FAN X., et al.
2020ApJ...904L..32D 1201     A     X C       27 4 ~ Constraining the gravitational lensing of z >= 6 quasars from their proximity zones. DAVIES F.B., WANG F., EILERS A.-C., et al.
2020ApJ...904..130V 104       D S             4 54 ~ Kiloparsec-scale ALMA imaging of [C II] and dust continuum emission of 27 quasar host galaxies at z ∼ 6. VENEMANS B.P., WALTER F., NEELEMAN M., et al.
2020ApJ...904..131N 104       D     X         3 28 ~ No evidence for [C II] halos or high-velocity outflows in z >= 6 quasar host galaxies. NOVAK M., VENEMANS B.P., WALTER F., et al.
2020ApJ...905...51S viz 409       D S   X         9 42 ~ The X-SHOOTER/ALMA sample of quasars in the epoch of reionization. I. NIR spectral modeling, iron enrichment, and broad emission line properties. SCHINDLER J.-T., FARINA E.P., BANADOS E., et al.
2021ApJ...906...12S 269           X C       5 14 ~ A closer look at two of the most Luminous quasars in the Universe. SCHINDLER J.-T., FAN X., NOVAK M., et al.
2021MNRAS.501.4289Z 152       D     X   F     3 12 ~ High-redshift SMBHs can grow from stellar-mass seeds via chaotic accretion. ZUBOVAS K. and KING A.
2021A&A...647A...5W 45           X         1 8 ~ First constraints on the AGN X-ray luminosity function at z ∼ 6 from an eROSITA-detected quasar. WOLF J., NANDRA K., SALVATO M., et al.
2021MNRAS.503.2077B 152       D S   X         3 21 ~ A comparison of quasar emission reconstruction techniques for z >= 5.0 Lyman α and Lyman β transmission. BOSMAN S.E.I., DUROVCIKOVA D., DAVIES F.B., et al.
2021MNRAS.503.2349D 18       D               1 39 ~ Infrared emission of z ∼ 6 galaxies: AGN imprints. DI MASCIA F., GALLERANI S., BEHRENS C., et al.
2021ApJ...911..141N 197       D     X         5 28 ~ The kinematics of z >= 6 quasar host galaxies. NEELEMAN M., NOVAK M., VENEMANS B.P., et al.
2021ApJ...914L..26F 18       D               1 10 ~ Seeding supermassive black holes with self-interacting dark matter: a unified scenario with baryons. FENG W.-X., YU H.-B. and ZHONG Y.-M.
2021ApJ...917...38E 45           X         1 11 ~ Detecting and characterizing young quasars. II. Four quasars at z ∼ 6 with lifetimes < 104 yr. EILERS A.-C., HENNAWI J.F., DAVIES F.B., et al.
2021MNRAS.506..613S 45           X         1 5 ~ Light, medium-weight, or heavy? The nature of the first supermassive black hole seeds. SASSANO F., SCHNEIDER R., VALIANTE R., et al.
2021MNRAS.506.3946D 18       D               1 41 ~ The dust attenuation law in z ∼ 6 quasars. DI MASCIA F., GALLERANI S., FERRARA A., et al.
2021MNRAS.508.1973M 45           X         1 4 ~ Seeds don't sink: even massive black hole 'seeds' cannot migrate to galaxy centres efficiently. MA L., HOPKINS P.F., MA X., et al.
2021A&A...655A..95S 2733     A D S   X C       60 10 ~ Jetted radio-quiet quasars at z > 5. SBARRATO T., GHISELLINI G., GIOVANNINI G., et al.
2021ApJ...922L..24C 3028 T   A S   X C       65 2 ~ X-ray evidence against the hypothesis that the hyperluminous z = 6.3 quasar
J0100+2802 is lensed.
2021A&A...656A.137G viz 18       D               1 17 ~ Low frequency radio properties of the z > 5 quasar population. GLOUDEMANS A.J., DUNCAN K.J., ROTTGERING H.J.A., et al.
2021ApJ...923..223Z 63       D     X         2 55 ~ Chasing the tail of cosmic reionization with dark gap statistics in the Lyα forest over 5 < z < 6. ZHU Y., BECKER G.D., BOSMAN S.E.I., et al.
2022MNRAS.511..616T 47           X         1 5 ~ The low-end of the black hole mass function at cosmic dawn. TRINCA A., SCHNEIDER R., VALIANTE R., et al.
2022ApJ...929...69L 215 T   A     X C   *   33 6 ~ Exploring the Radio Spectral Energy Distribution of the Ultraluminous Radio-quiet Quasar
at Redshift 6.3.
LIU Y., WANG R., MOMJIAN E., et al.
2022ApJ...929...86D 19       D               1 20 ~ The Decoupled Kinematics of High-z QSO Host Galaxies and Their Lyα Halos. DRAKE A.B., NEELEMAN M., VENEMANS B.P., et al.
2022AJ....163..251A 47           X         1 9 ~ Staring at the Shadows of Archaic Galaxies: Damped Lyα and Metal Absorbers Toward a Young z ∼ 6 Weak-line Quasar. ANDIKA I.T., JAHNKE K., BANADOS E., et al.
2022ApJ...930...27L 187           X C       3 9 ~ Spatially Resolved Molecular Interstellar Medium in a z = 6.6 Quasar Host Galaxy. LI J., VENEMANS B.P., WALTER F., et al.
2022ApJ...931...29C 19       D               1 10 ~ Measuring the Density Fields around Bright Quasars at z ∼ 6 with XQR-30 Spectra. CHEN H., EILERS A.-C., BOSMAN S.E.I., et al.
2022MNRAS.514...55B 65       D     X         2 66 ~ Hydrogen reionization ends by z = 5.3: Lyman-α optical depth measured by the XQR-30 sample. BOSMAN S.E.I., DAVIES F.B., BECKER G.D., et al.
2022MNRAS.514.2855P 19       D               2 23 ~ Lensing in the darkness: a Bayesian analysis of 22 Chandra sources at z >= 6 shows no evidence of lensing. PACUCCI F., FOORD A., GORDON L., et al.
2022ApJS..260...49K 19       D               1 87 ~ Radio-loud Quasars above Redshift 4: Very Long Baseline Interferometry (VLBI) Imaging of an Extended Sample. KREZINGER M., PERGER K., GABANYI K.E., et al.
2022MNRAS.514.5583Z 93           X         2 5 ~ The formation of the first quasars: the black hole seeds, accretion, and feedback models. ZHU Q., LI Y., LI Y., et al.
2022A&A...662L...2Z 93           X         2 9 ~ VLBI observations of VIK J2318-3113, a quasar at z = 6.44. ZHANG Y., AN T., WANG A., et al.
2022A&A...662A..60D 47           X         1 40 ~ Molecular gas in z ∼ 6 quasar host galaxies. DECARLI R., PENSABENE A., VENEMANS B., et al.
2022A&A...663A.159V 19       D               1 10 ~ An X-ray fading, UV brightening QSO at z ≃ 6. VITO F., MIGNOLI M., GILLI R., et al.
2022ApJ...939L...5L 187           X         4 11 ~ VLBA Reveals the Absence of a Compact Radio Core in the Radio-intermediate Quasar J2242+0334 at z = 5.9. LIU Y., WANG R., MOMJIAN E., et al.
2022ApJ...941..106F 345       D     X         8 41 ~ The X-shooter/ALMA Sample of Quasars in the Epoch of Reionization. II. Black Hole Masses, Eddington Ratios, and the Formation of the First Quasars. FARINA E.P., SCHINDLER J.-T., WALTER F., et al.
2023ApJ...942...59J 20       D               1 53 ~ (Nearly) Model-independent Constraints on the Neutral Hydrogen Fraction in the Intergalactic Medium at z ∼ 5-7 Using Dark Pixel Fractions in Lyα and Lyβ Forests. JIN X., YANG J., FAN X., et al.
2023ApJ...943...67S 150           X         3 6 ~ The Pan-STARRS1 z > 5.6 Quasar Survey. III. The z ≈ 6 Quasar Luminosity Function. SCHINDLER J.-T., BANADOS E., CONNOR T., et al.

goto View the references in ADSLimited to 100


© Université de Strasbourg/CNRS

    • Contact