QSO J1342+0928 , the SIMBAD biblio

QSO J1342+0928 , the SIMBAD biblio (115 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.19CEST17:05:14


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2017ApJ...851L...8V 888     A S   X C       20 9 107 Copious amounts of dust and gas in a z = 7.5 quasar host galaxy. VENEMANS B.P., WALTER F., DECARLI R., et al.
2018Natur.553..473B 247 3 743 An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. BANADOS E., VENEMANS B.P., MAZZUCCHELLI C., et al.
2018ApJ...854...97D 20       D               1 50 209 An ALMA [C II] survey of 27 quasars at z > 5.94. DECARLI R., WALTER F., VENEMANS B.P., et al.
2018ApJ...856L..25B 1188 T K A     X C       27 3 33 Chandra X-rays from the redshift 7.54 quasar
ULAS
J1342+0928
.
BANADOS E., CONNOR T., STERN D., et al.
2018ApJ...857...22L 92           X         1 1 51 The dramatic size and kinematic evolution of massive early-type galaxies. LAPI A., PANTONI L., ZANISI L., et al.
2018MNRAS.477.3694B 123           X         3 3 1 Maximally rotating supermassive stars at the onset of collapse: the perturbative effects of gas pressure, magnetic fields, dark matter, and dark energy. BUTLER S.P., LIMA A.R., BAUMGARTE T.W., et al.
2018A&A...615A.113M 1095 T   A S   X C       24 5 1
J1342+0928 supports the timeline in the Rh = ct cosmology.
MELIA F.
2018MNRAS.478.5564B 68     A     X         2 2 4 Imprints of quasar duty cycle on the 21-cm signal from the Epochof Reionization. BOLGAR F., EAMES E., HOTTIER C., et al.
2018ApJ...864..142D 1212     A D S   X C       26 2 202 Quantitative constraints on the reionization history from the IGM damping wing signature in two quasars at z > 7. DAVIES F.B., HENNAWI J.F., BANADOS E., et al.
2018ApJ...864..143D 1264     A     X         31 10 52 Predicting quasar continua near Lyα with principal component analysis. DAVIES F.B., HENNAWI J.F., BANADOS E., et al.
2018ApJ...865..126S 322     A     X C       7 3 27 Radiation hydrodynamical simulations of the first quasars. SMIDT J., WHALEN D.J., JOHNSON J.L., et al.
2018A&A...617A.127P 66     A     X         2 20 1 High-redshift quasar selection from the CFHQSIR survey. PIPIEN S., CUBY J.-G., BASA S., et al.
2018ApJ...866..159V 16       D               1 98 72 Dust emission in an accretion-rate-limited sample of z >= 6 quasars. VENEMANS B.P., DECARLI R., WALTER F., et al.
2018ApJ...868...15T 82             C       1 9 6 Super-Eddington accretion in the WISE-selected extremely luminous infrared galaxy W2246-0526. TSAI C.-W., EISENHARDT P.R.M., JUN H.D., et al.
2018MNRAS.481.4877N 317 T   A     X C F     5 2 9 Gas outflows from the
z = 7.54 quasar: predictions from the BLUETIDES simulation.
NI Y., DI MATTEO T., FENG Y., et al.
2019ApJ...870L..11F 93             C       1 8 73 The discovery of a gravitationally lensed quasar at z = 6.51. FAN X., WANG F., YANG J., et al.
2019MNRAS.483.1388T 800           X C       18 1 6 A tiny host galaxy for the first giant black hole: z = 7.5 quasar in BlueTides. TENNETI A., WILKINS S.M., DI MATTEO T., et al.
2019MNRAS.483.4080R 42           X         1 4 3 Dark matter model favoured by reionization data: 7 keV sterile neutrino versus cold dark matter. RUDAKOVSKYI A. and IAKUBOVSKYI D.
2019MNRAS.484.3897K 43           X         1 8 8 Evidence for short ∼ 1 Myr lifetimes from the He II proximity zones of z ∼ 4 quasars. KHRYKIN I.S., HENNAWI J.F. and WORSECK G.
2019MNRAS.484.5094G 1373 T   A     X C F     29 2 104 Constraints on reionization from the z = 7.5 QSO
ULAS
J1342+0928
.
GREIG B., MESINGER A. and BANADOS E.
2019MNRAS.484.5142P 60       D     X         2 7 12 A new bright z = 6.82 quasar discovered with VISTA: VHS J0411-0907. PONS E., McMAHON R.G., SIMCOE R.A., et al.
2019ApJ...872L..29S 84             C       1 26 2 Black versus dark: rapid growth of supermassive black holes in dark matter halos at z ∼ 6. SHIMASAKU K. and IZUMI T.
2019A&A...623A..92S 84             C       1 126 60 The X-shooter GRB afterglow legacy sample (XS-GRB). SELSING J., MALESANI D., GOLDONI P., et al.
2019ApJ...875...67M 255           X         6 2 9 Results from EDGES HigH-band. III. New constraints on parameters of the early universe. MONSALVE R.A., FIALKOV A., BOWMAN J.D., et al.
2019A&A...624L..13L 170           X         4 14 54 Dust production scenarios in galaxies at z ∼6-8.3. LESNIEWSKA A. and MICHALOWSKI M.J.
2019MNRAS.486.1763F 204           X         2 1 120 Signature of excess radio background in the 21-cm global signal and power spectrum. FIALKOV A. and BARKANA R.
2019A&A...625A..23C 1421     A D     X C       34 5 1 Black hole mass and spin estimates of the most distant quasars. CAMPITIELLO S., CELOTTI A., GHISELLINI G., et al.
2019ApJ...878...12H 43           X         1 83 128 Constraining the neutral fraction of hydrogen in the IGM at redshift 7.5. HOAG A., BRADAC M., HUANG K., et al.
2019MNRAS.487.2030L 42           X         1 2 ~ Cosmological test using the high-redshift detection rate of FSRQs with the Square Kilometre Array. LEAF K. and MELIA F.
2019MNRAS.487.3305M viz 17       D               1 230 47 New constraints on quasar evolution: broad-line velocity shifts over 1.5 <= z <= 7.5. MEYER R.A., BOSMAN S.E.I. and ELLIS R.S.
2019ApJ...879..117K 59       D     X         2 52 ~ High star formation rates of low Eddington ratio quasars at z >= 6. KIM Y. and IM M.
2019MNRAS.488.1035K viz 68           X         1 6 156 Evolution of the AGN UV luminosity function from redshift 7.5. KULKARNI G., WORSECK G. and HENNAWI J.F.
2019A&A...627A..72G 42           X         1 12 ~ A NuSTAR view of powerful γ-ray loud blazars. GHISELLINI G., PERRI M., COSTAMANTE L., et al.
2019ApJ...880...77O 173           X C       3 13 89 Subaru high-z exploration of low-luminosity quasars (SHELLQs). VI. Black hole mass Measurements of six quasars at 6.1 <= z <= 6.7. ONOUE M., KASHIKAWA N., MATSUOKA Y., et al.
2019ApJ...881L..23B 750 T K A     X C       16 2 28 The z = 7.54 quasar
ULAS
J1342+0928
is hosted by a galaxy merger.
BANADOS E., NOVAK M., NEELEMAN M., et al.
2019ApJ...881...63N 1842 T K A     X C       42 3 61 An ALMA multiline survey of the interstellar medium of the redshift 7.5 quasar host galaxy
J1342+0928.
NOVAK M., BANADOS E., DECARLI R., et al.
2019A&A...628L...6V 42           X         1 5 ~ Discovery of the first heavily obscured QSO candidate at z > 6 in a close galaxy pair. VITO F., BRANDT W.N., BAUER F.E., et al.
2019MNRAS.488.4004L 70           X         1 2 57 High-redshift quasars and their host galaxies - I. Kinematical and dynamical properties and their tracers. LUPI A., VOLONTERI M., DECARLI R., et al.
2019MNRAS.488.4195D 84           X         2 4 ~ Maximally rotating supermassive stars at the onset of collapse: effects of gas pressure. DENNISON K.A., BAUMGARTE T.W. and SHAPIRO S.L.
2019ApJ...882...77C 17       D               3 73 40 Heavy element absorption systems at 5.0 < z < 6.8: metal-poor neutral gas and a diminishing signature of highly ionized circumgalactic matter. COOPER T.J., SIMCOE R.A., COOKSEY K.L., et al.
2019A&A...630A.118V 61       D     X         2 28 69 The X-ray properties of z > 6 quasars: no evident evolution of accretion physics in the first Gyr of the Universe. VITO F., BRANDT W.N., BAUER F.E., et al.
2019ApJ...884L..19D 887     A     X C       20 2 53 Evidence for low radiative efficiency or highly obscured growth of z > 7 quasars. DAVIES F.B., HENNAWI J.F. and EILERS A.-C.
2019A&A...631A..85E 102           X         2 2 37 Euclid preparation. V. Predicted yield of redshift 7 < z < 9 quasars from the wide survey. EUCLID COLLABORATION, BARNETT R., WARREN S.J., et al.
2019A&A...631A.167D viz 87             C       1 10 32 A dense, solar metallicity ISM in the z = 4.2 dusty star-forming galaxy SPT 0418-47. DE BREUCK C., WEISS A., BETHERMIN M., et al.
2019MNRAS.489.5225I 84           X         2 2 ~ AGN radiative feedback in the early growth of massive black holes. ISHIBASHI W.
2019ApJ...886...92L 42           X         1 1 ~ Growth of massive black holes at high-z via accretion predominantly driven by magnetic outflows. LI J. and CAO X.
2019MNRAS.490.2542P viz 17       D               1 2245 ~ Unveiling the weak radio quasar population at z≥4. PERGER K., FREY S., GABANYI K.E., et al.
2019A&A...632A.109N 42           X         1 33 29 The most luminous blue quasars at 3.0 < z < 3.3. I. A tale of two X-ray populations. NARDINI E., LUSSO E., RISALITI G., et al.
2019MNRAS.490.4502V 209           X C       4 11 ~ Impact of X-rays on CO emission from high-z galaxies. VALLINI L., TIELENS A.G.G.M., PALLOTTINI A., et al.
2019ApJ...887..174V 125           X C       2 3 ~ Submillimeter signatures from growing supermassive black holes before reionization. VASILIEV E.O. and SHCHEKINOV Y.A.
2020MNRAS.491.3884P 238     A     X         6 14 ~ X-ray properties of z >= 6.5 quasars. PONS E., McMAHON R.G., BANERJI M., et al.
2020MNRAS.493.3732D 64           X         1 2 42 Star formation in accretion discs and SMBH growth. DITTMANN A.J. and MILLER M.C.
2020MNRAS.493.4256D 2324     A     X C       54 7 ~ Reionization history constraints from neural network based predictions of high-redshift quasar continua. DUROVCIKOVA D., KATZ H., BOSMAN S.E.I., et al.
2020ApJ...892..109N 134           X         1 2 183 Rapid reionization by the oligarchs: the case for massive, uv-bright, star-forming galaxies with high escape fractions. NAIDU R.P., TACCHELLA S., MASON C.A., et al.
2020ApJS..247...69E 47           X         1 17 68 The CatWISE Preliminary Catalog: motions from WISE and NEOWISE data. EISENHARDT P.R.M., MAROCCO F., FOWLER J.W., et al.
2020MNRAS.494..789R viz 60       D     X         2 489 25 The near and mid-infrared photometric properties of known redshift z >= 5 quasars. ROSS N.P. and CROSS N.J.G.
2020ApJ...895...74N 17       D               1 41 15 ALMA observations of quasar host galaxies at z ≃ 4.8. NGUYEN N.H., LIRA P., TRAKHTENBROT B., et al.
2020ApJ...895..130B 85           X         2 16 ~ Cosmic spin and mass evolution of black holes and its impact. BHATTACHARYYA D. and MANGALAM A.
2020ApJ...896...23W 271           X C       5 6 97 A significantly neutral intergalactic medium around the luminous z = 7 quasar J0252-0503. WANG F., DAVIES F.B., YANG J., et al.
2020MNRAS.495.4845C 84           X         1 1 41 Emulating the global 21-cm signal from Cosmic Dawn and Reionization. COHEN A., FIALKOV A., BARKANA R., et al.
2020ApJ...896..151R 85           X         2 44 12 Survey of extremely high-velocity outflows in Sloan Digital Sky Survey quasars. RODRIGUEZ HIDALGO P., KHATRI A.M., HALL P.B., et al.
2020MNRAS.496..888N 102       D     X         3 8 ~ Effects of the Hubble parameter on the cosmic growth of the first quasars. NUNES R.C. and PACUCCI F.
2020ApJ...897L..14Y 321     A     X C       6 5 200 Poniua'ena: a luminous z > 7.5 quasar hosting a 1.5 billion solar mass black hole. YANG J., WANG F., FAN X., et al.
2020MNRAS.496.1115B 43           X         1 4 ~ Accretion disc luminosity for black holes surrounded by dark matter. BOSHKAYEV K., IDRISSOV A., LUONGO O., et al.
2020ApJ...898..105O 2896 T   A     X C       66 2 36 No redshift evolution in the broad-line-region metallicity up to z = 7.54: deep near-infrared spectroscopy of
ULAS
J1342+0928
.
ONOUE M., BANADOS E., MAZZUCCHELLI C., et al.
2020ApJ...900..131L 767           X C       17 10 19 Ionized and atomic interstellar medium in the z = 6.003 quasar SDSS J2310+1855. LI J., WANG R., COX P., et al.
2020MNRAS.498.6083E 56           X         1 2 27 Large-scale simulations of H and He reionization and heating driven by stars and more energetic sources. EIDE M.B., CIARDI B., GRAZIANI L., et al.
2020A&A...642A.150L viz 102       D     X         3 2429 92 Quasars as standard candles. III. Validation of a new sample for cosmological studies. LUSSO E., RISALITI G., NARDINI E., et al.
2020ApJ...903L..18Z 17       D               1 14 ~ Effects of spin on constraining the seeds and growth of >=109M supermassive black holes in z > 6.5 quasars. ZHANG X., LU Y. and FANG T.
2020ApJ...904..111K 43           X         1 45 26 The Infrared Medium-deep Survey. VIII. Quasar luminosity function at z ∼ 5. KIM Y., IM M., JEON Y., et al.
2020ApJ...904..130V 231       D S   X         5 54 75 Kiloparsec-scale ALMA imaging of [C II] and dust continuum emission of 27 quasar host galaxies at z ∼ 6. VENEMANS B.P., WALTER F., NEELEMAN M., et al.
2020ApJ...904..131N 61       D     X         2 28 36 No evidence for [C II] halos or high-velocity outflows in z >= 6 quasar host galaxies. NOVAK M., VENEMANS B.P., WALTER F., et al.
2020ApJ...905...51S viz 699       D S   X C       15 42 62 The X-SHOOTER/ALMA sample of quasars in the epoch of reionization. I. NIR spectral modeling, iron enrichment, and broad emission line properties. SCHINDLER J.-T., FARINA E.P., BANADOS E., et al.
2021ApJ...907L...1W 119             C       1 7 230 A luminous quasar at redshift 7.642. WANG F., YANG J., FAN X., et al.
2021ApJ...908...53W 324       D     X         8 13 37 Revealing the accretion physics of supermassive black holes at redshift z ∼ 7 with Chandra and infrared observations. WANG F., FAN X., YANG J., et al.
2021MNRAS.501.4289Z 148       D     X   F     3 12 ~ High-redshift SMBHs can grow from stellar-mass seeds via chaotic accretion. ZUBOVAS K. and KING A.
2021ApJ...908..235I 45           X         1 7 11 Subaru high-z exploration of low-luminosity quasars (SHELLQs). XII. Extended [C II] structure (merger or outflow) in a z = 6.72 Red quasar. IZUMI T., ONOUE M., MATSUOKA Y., et al.
2021ApJ...911..141N 281       D     X         7 28 58 The kinematics of z >= 6 quasar host galaxies. NEELEMAN M., NOVAK M., VENEMANS B.P., et al.
2021ApJ...914...36I 281       D     X         7 15 33 Subaru high-z exploration of low-luminosity quasars (SHELLQs). XIII. Large-scale feedback and star formation in a low-luminosity quasar at z = 7.07 on the local black hole to host mass relation. IZUMI T., MATSUOKA Y., FUJIMOTO S., et al.
2021ApJ...914L..26F 20       D               1 10 33 Seeding supermassive black holes with self-interacting dark matter: a unified scenario with baryons. FENG W.-X., YU H.-B. and ZHONG Y.-M.
2021MNRAS.506..613S 50           X         1 5 33 Light, medium-weight, or heavy? The nature of the first supermassive black hole seeds. SASSANO F., SCHNEIDER R., VALIANTE R., et al.
2021A&A...652A..23F viz 17       D               1 66 8 Measuring chemical abundances with infrared nebular lines: HII-CHI-MISTRY-IR. FERNANDEZ-ONTIVEROS J.A., PEREZ-MONTERO E., VILCHEZ J.M., et al.
2021A&A...652A..66P 306           X C       6 21 27 ALMA multiline survey of the ISM in two quasar host-companion galaxy pairs at z > 6. PENSABENE A., DECARLI R., BANADOS E., et al.
2021MNRAS.508.1262M 44           X         1 2 ~ Extracting the astrophysics of reionization from the Lyα forest power spectrum: a first forecast. MONTERO-CAMACHO P. and MAO Y.
2021ApJ...919..120M 49           X         1 7 37 The evolution of the Lyman-alpha luminosity function during reionization. MORALES A.M., MASON C.A., BRUTON S., et al.
2021MNRAS.508.1973M 54           X         1 4 40 Seeds don't sink: even massive black hole 'seeds' cannot migrate to galaxy centres efficiently. MA L., HOPKINS P.F., MA X., et al.
2021A&A...656A.137G viz 17       D               1 493 12 Low frequency radio properties of the z > 5 quasar population. GLOUDEMANS A.J., DUNCAN K.J., ROTTGERING H.J.A., et al.
2022MNRAS.509.1885P 92               F     1 7 15 The search for the farthest quasar: consequences for black hole growth and seed models. PACUCCI F. and LOEB A.
2021ApJ...923..229G 63           X         1 1 19 SILVERRUSH. XI. Constraints on the Lyα luminosity function and cosmic reionization at z = 7.3 with Subaru/Hyper Suprime-Cam. GOTO H., SHIMASAKU K., YAMANAKA S., et al.
2022MNRAS.511..616T 50           X         1 5 27 The low-end of the black hole mass function at cosmic dawn. TRINCA A., SCHNEIDER R., VALIANTE R., et al.
2022ApJ...926..114O 45           X         1 24 8 Conditions for Direct Black Hole Seed Collapse near a Radio-loud Quasar 1 Gyr after the Big Bang. OVERZIER R.A.
2022MNRAS.512.5390G 1063     A S   X C F     21 4 24 IGM damping wing constraints on reionization from covariance reconstruction of two z >= 7 QSOs. GREIG B., MESINGER A., DAVIES F.B., et al.
2022ApJ...927..152M 47           X         1 8 22 Physical Constraints on the Extended Interstellar Medium of the z = 6.42 Quasar J1148+5251: [C II]158µm, [N II]205µm, and [O I]146µm Observations. MEYER R.A., WALTER F., CICONE C., et al.
2022ApJ...927..237I 49           X         1 4 19 Rapid Growth of Seed Black Holes during Early Bulge Formation. INAYOSHI K., NAKATANI R., TOYOUCHI D., et al.
2022ApJ...928..179L 358           X C       7 25 2 Multiphase ISM in the z = 5.7 Hyperluminous Starburst SPT 0346-52. LITKE K.C., MARRONE D.P., ARAVENA M., et al.
2022Natur.604..261F 2 12 32 A dusty compact object bridging galaxies and quasars at cosmic dawn. FUJIMOTO S., BRAMMER G.B., WATSON D., et al.
2022MNRAS.513.1801L 63       D     X         2 27 14 Chemical abundance of z ∼ 6 quasar broad-line regions in the XQR-30 sample. LAI S., BIAN F., ONKEN C.A., et al.
2022ApJ...929..161W 46           X         1 4 7 ALMA Detections of [O III] and [C II] Emission Lines From A1689-zD1 at z = 7.13. WONG Y.H.V., WANG P., HASHIMOTO T., et al.
2022MNRAS.514.5583Z 225           X C       4 5 8 The formation of the first quasars: the black hole seeds, accretion, and feedback models. ZHU Q., LI Y., LI Y., et al.
2022A&A...662A..60D 45           X         1 40 17 Molecular gas in z ∼ 6 quasar host galaxies. DECARLI R., PENSABENE A., VENEMANS B., et al.
2022MNRAS.515.3224N 242       D     X   F     5 16 3 Paving the way forEuclid and JWST via probabilistic selection of high-redshift quasars. NANNI R., HENNAWI J.F., WANG F., et al.
2022ApJ...937...19Z 45           X         1 30 2 Radio Jet Proper-motion Analysis of Nine Distant Quasars above Redshift 3.5. ZHANG Y., AN T., FREY S., et al.
2022ApJ...937...61Y 2644     A D S   X C       58 4 6 Potential Signature of Population III Pair-instability Supernova Ejecta in the BLR Gas of the Most Distant Quasar at z = 7.54. YOSHII Y., SAMESHIMA H., TSUJIMOTO T., et al.
2022ApJ...941..106F 242       D     X         6 41 26 The X-shooter/ALMA Sample of Quasars in the Epoch of Reionization. II. Black Hole Masses, Eddington Ratios, and the Formation of the First Quasars. FARINA E.P., SCHINDLER J.-T., WALTER F., et al.
2022PASP..134l1001M 228           X         5 1 4 A Candid Assessment of Standard Cosmology. MELIA F.
2023ApJ...946L..45T 48           X         1 3 5 Accurate Dust Temperature and Star Formation Rate in the Most Luminous z > 6 Quasar in the Hyperluminous Quasars at the Epoch of Reionization (HYPERION) Sample. TRIPODI R., FERUGLIO C., KEMPER F., et al.
2023MNRAS.521.2526K           X     *   1 6 4 A solar metallicity galaxy at z > 7? Possible detection of the [N II] 122 μm and [O III] 52 μm lines. KILLI M., WATSON D., FUJIMOTO S., et al.
2023MNRAS.519.3027S 47           X         1 4 1 Probing quasar lifetimes with proximate 21-centimetre absorption in the diffuse intergalactic medium at redshifts z ≥ 6. SOLTINSKY T., BOLTON J.S., MOLARO M., et al.
2023MNRAS.520..740F 47           X         1 4 3 Eddington accreting black holes in the epoch of reionization. FONTANOT F., CRISTIANI S., GRAZIAN A., et al.
2023MNRAS.523.3119W 19       D               2 27 1 An empirical study of dust properties at the earliest epochs. WITSTOK J., JONES G.C., MAIOLINO R., et al.
2023A&A...676A.115P 19       D               1 44 ~ Unraveling the formation histories of the first supermassive black holes with the Square Kilometre Array's pulsar timing array. PADMANABHAN H. and LOEB A.
2023ApJ...954L..10F 280           X         6 11 ~ First Constraints on Dense Molecular Gas at z = 7.5149 from the Quasar Pōniuā'ena. FERUGLIO C., MAIO U., TRIPODI R., et al.
2023ApJ...954..164T 19       D               2 102 ~ Modeling the Central Supermassive Black Hole Mass of Quasars via the LSTM Approach. TABASI S.S., SALMANI R.V., KHALILIYAN P., et al.
2023A&A...678A.201Z 718       D     X C       15 20 ~ HYPerluminous quasars at the Epoch of ReionizatION (HYPERION): A new regime for the X-ray nuclear properties of the first quasars. ZAPPACOSTA L., PICONCELLI E., FIORE F., et al.
2023A&A...680A..82C 3079     A D     X C       66 4 ~ Metal enrichment and evolution in four z > 6.5 quasar sightlines observed with JWST/NIRSpec. CHRISTENSEN L., JAKOBSEN P., WILLOTT C., et al.

goto View the references in ADSLimited to 100