QSO J1131-1231 , the SIMBAD biblio

QSO J1131-1231 , the SIMBAD biblio (251 results) C.D.S. - SIMBAD4 rel 1.8 - 2022.12.07CET02:07:24


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2000ApJS..129..547B viz 15       D               1 1626 70 RBSC-NVSS sample. I. Radio and optical identifications of a complete sample of 1556 bright X-ray sources. BAUER F.E., CONDON J.J., THUAN T.X., et al.
2003A&A...406L..43S 75 T                   11 60 A quadruply imaged quasar with an optical Einstein ring candidate:
1RXS J113155.4-123155.
SLUSE D., SURDEJ J., CLAESKENS J.-F., et al.
2003A&A...412..399V 72 145 A catalogue of quasars and active nuclei: 11th edition. VERON-CETTY M.-P. and VERON P.
2003ApJ...598..138K 1 23 103 Identifying lenses with small-scale structure. I. Cusp lenses. KEETON C.R., GAUDI B.S. and PETTERS A.O.
2005A&A...433..757S viz         O           224 28 New optical polarization measurements of quasi-stellar objects. The data. SLUSE D., HUTSEMEKERS D., LAMY H., et al.
2005ApJ...622...72M 1 15 37 Testing ΛCDM with gravitational lensing constraints on small-scale structure. METCALF R.B.
2005ApJ...635...35K 30 52 Identifying lenses with small-scale structure. II. Fold lenses. KEETON C.R., GAUDI B.S. and PETTERS A.O.
2005MNRAS.360.1333W 1 12 26 The lens and source of the optical Einstein ring gravitational lens ER 0047-2808. WAYTH R.B., WARREN S.J., LEWIS G.F., et al.
2005MNRAS.361L..38O 10 9 Lens galaxy environments and anomalous flux ratios in gravitational lenses. OGURI M.
2005MNRAS.363.1369W 14 21 The discovery of two new galaxy-galaxy lenses from the Sloan Digital Sky Survey. WILLIS J.P., HEWETT P.C. and WARREN S.J.
2006A&A...449..539S 37   K                 15 17 Multi-wavelength study of the gravitational lens system
RXS J113155.4-123155. I. Multi-epoch optical and near infrared imaging.
SLUSE D., CLAESKENS J.-F., ALTIERI B., et al.
2006A&A...450..461S 28 16 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. IV. Models of prospective time-delay lenses. SAHA P., COURBIN F., SLUSE D., et al.
2006A&A...451..865C 61   K A   O           11 27 Multi wavelength study of the gravitational lens system
RXS J1131-1231. II. Lens model and source reconstruction.
CLAESKENS J.-F., SLUSE D., RIAUD P., et al.
2006A&A...455..773V viz 108223 545 A catalogue of quasars and active nuclei: 12th edition. VERON-CETTY M.-P. and VERON P.
2006ApJ...637L..73K 1 7 20 A simple method to find all lensed quasars. KOCHANEK C.S., MOCHEJSKA B., MORGAN N.D., et al.
2006ApJ...640..569B 39   K                 6 35 X-ray and optical flux anomalies in the quadruply lensed QSO 1RXS J1131-1231. BLACKBURNE J.A., POOLEY D. and RAPPAPORT S.
2006ApJ...646...85W         O           27 39 First results from a photometric survey of strong gravitational lens environments. WILLIAMS K.A., MOMCHEVA I., KEETON C.R., et al.
2006ApJ...648...67P 1 12 34 A strong X-ray flux ratio anomaly in the quadruply lensed quasar PG 1115+080. POOLEY D., BLACKBURNE J.A., RAPPAPORT S., et al.
2006ApJ...649..616P 2 60 245 Probing the coevolution of supermassive black holes and galaxies using gravitationally lensed quasar hosts. PENG C.Y., IMPEY C.D., RIX H.-W., et al.
2006MNRAS.366.1529M 5 8 95 Radial distribution and strong lensing statistics of satellite galaxies and substructure using high-resolution ΛCDM hydrodynamical simulations. MACCIO A.V., MOORE B., STADEL J., et al.
2006MNRAS.367.1367A 3 8 49 Simulations of strong gravitational lensing with substructure. AMARA A., METCALF R.B., COX T.J., et al.
2006MNRAS.368..171Z 1 25 79 Testing Bekenstein's relativistic Modified Newtonian Dynamics with lensing data. ZHAO H., BACON D.J., TAYLOR A.N., et al.
2006ApJ...650L..17S 1 24 51 The Hubble time inferred from 10 time delay lenses. SAHA P., COLES J., MACCIO A.V., et al.
2007ApJ...660....1O 1 46 101 Gravitational lens time delays: a statistical assessment of lens model dependences and implications for the global Hubble constant. OGURI M.
2007ApJ...660.1016S 39   K                 7 22 Integral field spectroscopy of the quadruply lensed quasar 1RXS J1131-1231: new light on lens substructures. SUGAI H., KAWAI A., SHIMONO A., et al.
2007ApJ...661...19P 3 13 101 X-ray and optical flux ratio anomalies in quadruply lensed quasars. I. Zooming in on quasar emission regions. POOLEY D., BLACKBURNE J.A., RAPPAPORT S., et al.
2007A&A...468..885S 287 T   A     X C       6 13 43 Multi-wavelength study of the gravitational lens system RXS
J1131-1231. III. Long slit spectroscopy: micro-lensing probes the QSO structure.
SLUSE D., CLAESKENS J.-F., HUTSEMEKERS D., et al.
2007AJ....134.1515K 1 8 16 A new quadruply lensed quasar: SDSS J125107.57+293540.5. KAYO I., INADA N., OGURI M., et al.
2007MNRAS.382.1225M 57       D     X         2 6 52 Constraining warm dark matter using QSO gravitational lensing. MIRANDA M. and MACCIO A.V.
2008A&A...480..647E 76           X         2 24 32 Microlensing variability in the gravitationally lensed quasar. QSO 2237+0305 = the Einstein Cross. I. Spectrophotometric monitoring with the VLT. EIGENBROD A., COURBIN F., SLUSE D., et al.
2008MNRAS.386..397J 39           X         1 11 22 Microlensing of the X-ray, UV and optical emission regions of quasars: simulations of the time-scales and amplitude variations of microlensing events. JOVANOVIC P., ZAKHAROV A.F., POPOVIC L.C., et al.
2008ApJ...685..725W 33 9 Lensed image angles: new statistical evidence for substructure. WILLIAMS L.L.R., FOLEY P., FARNSWORTH D., et al.
2008MNRAS.390...39B 251 T   A     X   F     5 3 6 Unlensing HST observations of the Einstein ring
1
RXS J1131-1231
: a Bayesian analysis.
BREWER B.J. and LEWIS G.F.
2008ApJ...689..755M 78           X         2 13 76 X-ray and optical microlensing in the lensed quasar PG 1115+080. MORGAN C.W., KOCHANEK C.S., DAI X., et al.
2008RMxAC..32...83S 515 T K A     X C       12 6 4 Microlensing probes the AGN structure of the lensed quasar
J1131-1231.
SLUSE D., CLAESKENS J.-F., HUTSEMEKERS D., et al.
2009ApJ...693..174C 2581 T K A     X C       66 12 78 X-ray microlensing in
RXJ1131-1231 and HE1104-1805.
CHARTAS G., KOCHANEK C.S., DAI X., et al.
2009ApJ...697.1892P 77           X         2 11 36 The dark-matter fraction in the elliptical galaxy lensing the quasar PG 1115+080. POOLEY D., RAPPAPORT S., BLACKBURNE J., et al.
2009ApJ...699.1720K 368     A     X C F     8 11 61 A new channel for detecting dark matter substructure in galaxies: gravitational lens time delays. KEETON C.R. and MOUSTAKAS L.A.
2009RMxAC..35..195F 76             C       1 39 0 Cosmology with gravitational lenses. FALCO E.E.
2009ApJ...700.1173Z viz 137     A S   X         3 94 30 Evidence for an intermediate line region in active galactic nuclei's inner torus region and its evolution from narrow to broad line Seyfert I galaxies. ZHU L., ZHANG S.N. and TANG S.
2009MNRAS.398..233F 39           X         1 12 46 The accretion disc in the quasar SDSS J0924+0219. FLOYD D.J.E., BATE N.F. and WEBSTER R.L.
2009ApJS..184..138H viz 15       D               1 20671 30 XID II: statistical cross-association of ROSAT bright source catalog X-ray sources with 2MASS point source catalog near-infrared sources. HAAKONSEN C.B. and RUTLEDGE R.E.
2009MNRAS.398.1235X 93       D     X         3 16 63 Effects of dark matter substructures on gravitational lensing: results from the Aquarius simulations. XU D.D., MAO S., WANG J., et al.
2009A&A...505..385A viz 15       D               1 99836 26 The large quasar reference frame (LQRF). An optical representation of the ICRS. ANDREI A.H., SOUCHAY J., ZACHARIAS N., et al.
2009A&A...507...35A 38           X         1 21 13 COSMOS 5921+0638: characterization and analysis of a new strong gravitationally lensed AGN. ANGUITA T., FAURE C., KNEIB J.-P., et al.
2009ApJ...706.1451M 168       D     X   F     4 70 41 Microlensing-based estimate of the mass fraction in compact objects in lens galaxies. MEDIAVILLA E., MUNOZ J.A., FALCO E., et al.
2010ApJ...709..278D 342 T K A     X         8 6 149 The sizes of the X-ray and optical emission regions of
RXJ 1131-1231.
DAI X., KOCHANEK C.S., CHARTAS G., et al.
2010ApJ...709..552C 1114     A D     X   F     29 105 10 Identifying anomalies in gravitational lens time delays. CONGDON A.B., KEETON C.R. and NORDGREN C.E.
2009A&ARv..17...47T 39           X         1 39 102 X-ray absorption and reflection in active galactic nuclei. TURNER T.J. and MILLER L.
2010ApJ...712..658P 78           X         2 10 35 The transverse peculiar velocity of the Q2237+0305 lens galaxy and the mean mass of its stars. POINDEXTER S. and KOCHANEK C.S.
2010ApJ...712.1129M 253       D     X         7 12 170 The quasar accretion disk size-black hole mass relation. MORGAN C.W., KOCHANEK C.S., MORGAN N.D., et al.
2010ApJ...712.1378P 170       D     X   F     4 20 42 The Hubble constant inferred from 18 time-delay lenses. PARAFICZ D. and HJORTH J.
2010AJ....139.1935S 38           X         1 8 0 The optimal gravitational lens telescope. SURDEJ J., DELACROIX C., COLEMAN P., et al.
2010ApJ...714.1582B 39           X         1 46 179 Innovations in the analysis of Chandra-ACIS observations. BROOS P.S., TOWNSLEY L.K., FEIGELSON E.D., et al.
2010ApJ...716.1579L 15       D               2 48 34 Cosmic evolution of virial and stellar mass in massive early-type galaxies. LAGATTUTA D.J., FASSNACHT C.D., AUGER M.W., et al.
2010A&A...518A..10V viz 15       D               2 168912 373 A catalogue of quasars and active nuclei: 13th edition. VERON-CETTY M.-P. and VERON P.
2010ApJ...724..400C 38           X         1 9 11 Gravitational nanolensing from subsolar mass dark matter halos. CHEN J. and KOUSHIAPPAS S.M.
2010MNRAS.408.1721X 40           X         1 8 33 Substructure lensing: effects of galaxies, globular clusters and satellite streams. XU D.D., MAO S., COOPER A.P., et al.
2011ApJ...726...84W 775     A D     X C       20 14 52 The effect of environment on shear in strong gravitational lenses. WONG K.C., KEETON C.R., WILLIAMS K.A., et al.
2010A&A...522A..95C 730     A D     X C       19 52 23 COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. VIII. Deconvolution of high resolution near-IR images and simple mass models for 7 gravitationally lensed quasars. CHANTRY V., SLUSE D. and MAGAIN P.
2011ApJ...729...34B 752       D     X C       19 55 113 Sizes and temperature profiles of quasar accretion disks from chromatic microlensing. BLACKBURNE J.A., POOLEY D., RAPPAPORT S., et al.
2011MNRAS.410.2167F 15       D               2 21 35 Galaxy number counts and implications for strong lensing. FASSNACHT C.D., KOOPMANS L.V.E. and WONG K.C.
2011ApJ...731...71B 40           X         1 14 31 A microlensing measurement of dark matter fractions in three lensing galaxies. BATE N.F., FLOYD D.J.E., WEBSTER R.L., et al.
2011A&A...528A.100S 43           X         1 6 58 Zooming into the broad line region of the gravitationally lensed quasar QSO 2237+0305 = the EINSTEIN cross. III. Determination of the size and structure of the CIV and CIII] emitting regions using microlensing. SLUSE D., SCHMIDT R., COURBIN F., et al.
2011ApJ...735..107M 39           X         1 13 14 A jet model for the broadband spectrum of the Seyfert 1 galaxy NGC 4051. MAITRA D., MILLER J.M., MARKOFF S., et al.
2011ApJ...738...96M 132       D     X         4 90 67 The microlensing properties of a sample of 87 lensed quasars. MOSQUERA A.M. and KOCHANEK C.S.
2012ApJ...744...90B 55       D     X         2 27 8 A graphics processing unit-enabled, high-resolution cosmological microlensing parameter survey. BATE N.F. and FLUKE C.J.
2012ApJ...744..104H 40           X         1 5 11 A new microlensing event in the doubly imaged quasar Q 0957+561. HAINLINE L.J., MORGAN C.W., BEACH J.N., et al.
2012ApJ...744..111P 1538       D S   X C       38 16 39 X-ray and optical flux ratio anomalies in quadruply lensed quasars. II. Mapping the dark matter content in elliptical galaxies. POOLEY D., RAPPAPORT S., BLACKBURNE J.A., et al.
2012A&A...538A..99S 468     A D     X C       12 72 45 COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. X. Modeling based on high-precision astrometry of a sample of 25 lensed quasars: consequences for ellipticity, shear, and astrometric anomalies. SLUSE D., CHANTRY V., MAGAIN P., et al.
2012MNRAS.420.2944W 94       D         F     2 41 5 The fundamental surface of quad lenses. WOLDESENBET A.G. and WILLIAMS L.L.R.
2012ApJ...748..131S viz 39           X         1 1834 27 On the link between associated mg II absorbers and star formation in quasar hosts. SHEN Y. and MENARD B.
2012ApJ...751...52E viz 16       D               1 4326 40 Reliable identifications of active galactic nuclei from the WISE, 2MASS, and ROSAT all-sky surveys. EDELSON R. and MALKAN M.
2012ApJ...751..106J 39           X         1 24 43 A robust determination of the size of quasar accretion disks using gravitational microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., MUNOZ J.A., et al.
2012MNRAS.423..676A 39           X         1 10 13 Resolving the inner structure of QSO discs through fold-caustic-crossing events. ABOLMASOV P. and SHAKURA N.I.
2012ApJ...755...24C 235           X         6 13 35 X-ray monitoring of gravitational lenses with Chandra. CHEN B., DAI X., KOCHANEK C.S., et al.
2012ApJ...755...31C viz 16       D               2 312 26 Testing the dark energy with gravitational lensing statistics. CAO S., COVONE G. and ZHU Z.-H.
2012ApJ...756...52M viz 121           X         3 8 67 Further evidence that quasar X-ray emitting regions are compact: X-ray and optical microlensing in the lensed quasar Q J0158-4325. MORGAN C.W., HAINLINE L.J., CHEN B., et al.
2012A&A...544A..62S viz 757       D     X C       19 47 67 Microlensing of the broad line region in 17 lensed quasars. SLUSE D., HUTSEMEKERS D., COURBIN F., et al.
2012ApJ...757..137C 1351   K A S   X C       33 8 45 Revealing the structure of an accretion disk through energy-dependent X-ray microlensing. CHARTAS G., KOCHANEK C.S., DAI X., et al.
2013ApJ...762..122C 39           X         1 7 7 Inclination-dependent active galactic nucleus flux profiles from strong lensing of the Kerr spacetime. CHEN B., DAI X. and BARON E.
2012MNRAS.426.2978I 211       D S   X C       4 31 21 Weak lensing by line-of-sight haloes as the origin of flux-ratio anomalies in quadruply lensed QSOs. INOUE K.T. and TAKAHASHI R.
2012MNRAS.427.1867A 445       D     X C F     10 21 10 Microlensing evidence for super-Eddington disc accretion in quasars. ABOLMASOV P. and SHAKURA N.I.
2012Msngr.150...49T 6 6 COSMOGRAIL: Measuring time delays of gravitationally lensed quasars to constrain cosmology. TEWES M., COURBIN F., MEYLAN G., et al.
2013ApJ...766...70S 2391   K A S   X C       58 2 184 Two accurate time-delay distances from strong lensing: implications for cosmology. SUYU S.H., AUGER M.W., HILBERT S., et al.
2013MNRAS.432..679C 50           X         1 2 47 Reconstructing the lensing mass in the universe from photometric catalogue data. COLLETT T.E., MARSHALL P.J., AUGER M.W., et al.
2013ApJ...769L...7R 17       D               1 28 63 On the size and location of the X-ray emitting coronae around black holes. REIS R.C. and MILLER J.M.
2013ApJ...769...53M 200           X C F     3 12 82 The structure of the X-ray and optical emitting regions of the lensed quasar Q 2237+0305. MOSQUERA A.M., KOCHANEK C.S., CHEN B., et al.
2013ApJ...769..131C 41           X         1 3 12 Effects of Kerr strong gravity on quasar X-ray microlensing. CHEN B., DAI X., BARON E., et al.
2013A&A...553A..53S viz 157           X C       3 13 12 Mid-infrared microlensing of accretion disc and dusty torus in quasars: effects on flux ratio anomalies. SLUSE D., KISHIMOTO M., ANGUITA T., et al.
2013A&A...553A.121E viz 40           X         1 12 36 COSMOGRAIL: the COSmological MOnitoring. of GRAvItational Lenses. XII. Time delays of the doubly lensed quasars SDSS J1206+4332 and HS 2209+1914. EULAERS E., TEWES M., MAGAIN P., et al.
2013ApJS..207...19B viz 16       D               1 1211 304 The 70 month Swift-BAT all-sky hard X-ray survey. BAUMGARTNER W.H., TUELLER J., MARKWARDT C.B., et al.
2013MNRAS.434..832V 16       D               1 9 7 A new parameter space study of cosmological microlensing. VERNARDOS G. and FLUKE C.J.
2013A&A...556A..22T viz 1680 T K A S   X C       40 11 90 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX
J1131-1231.
TEWES M., COURBIN F., MEYLAN G., et al.
2013MNRAS.435.2092I 315       S   X C       6 2 3 Direct gravitational imaging of intermediate mass black holes in extragalactic haloes. INOUE K.T., RASHKOV V., SILK J., et al.
2013A&A...557A..44R viz 42           X         1 6 37 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XIV. Time delay of the doubly lensed quasar SDSS J1001+5027. RATHNA KUMAR S., TEWES M., STALIN C.S., et al.
2013ApJ...778..123G 39           X         1 41 9 Microlensing of quasar ultraviolet iron emission. GUERRAS E., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2013A&A...559A..37S 123           X         3 8 80 Mass-sheet degeneracy, power-law models and external convergence: Impact on the determination of the Hubble constant from gravitational lensing. SCHNEIDER P. and SLUSE D.
2014MNRAS.437..600S 254       D     X         7 40 30 Hubble constant and dark energy inferred from free-form determined time delay distances. SERENO M. and PARAFICZ D.
2014ApJ...783...47J 40           X         1 26 33 The average size and temperature profile of quasar accretion disks. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2014ApJS..211...16V 41           X         1 4 15 GERLUMPH data release 1: high-resolution cosmological microlensing magnification maps and eResearch tools. VERNARDOS G., FLUKE C.J., BATE N.F., et al.
2014MNRAS.439.2494O 16       D               1 162 55 The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses. OGURI M., RUSU C.E. and FALCO E.E.
2014Natur.507..173R 5 ~ Cosmic lens reveals spinning black hole. RISALITI G.
2014Natur.507..207R 2 5 29 Reflection from the strong gravity regime in a lensed quasar at redshift z=0.658. REIS R.C., REYNOLDS M.T., MILLER J.M., et al.
2014MNRAS.440..870T 254       D     X         7 41 11 Weak lensing by intergalactic ministructures in quadruple lens systems: simulation and detection. TAKAHASHI R. and INOUE K.T.
2014ApJ...788L..35S 720   K A     X C       17 2 85 Cosmology from gravitational lens time delays and Planck data. SUYU S.H., TREU T., HILBERT S., et al.
2014ApJ...792L..19R 160           X         4 5 13 A rapidly spinning black hole powers the EINSTEIN cross. REYNOLDS M.T., WALTON D.J., MILLER J.M., et al.
2014ApJ...793...96S 454       D     X C       11 20 40 A calibration of the stellar mass fundamental plane at z ∼ 0.5 using the micro-lensing-induced flux ratio anomalies of macro-lensed quasars. SCHECHTER P.L., POOLEY D., BLACKBURNE J.A., et al.
2014ApJ...794..104S 80             C       1 23 75 Linking the spin evolution of massive black holes to galaxy kinematics. SESANA A., BARAUSSE E., DOTTI M., et al.
2014MNRAS.442.1090H 95       D       C       3 16 6 Modelling spikes in quasar accretion disc temperature. HALL P.B., NOORDEH E.S., CHAJET L.S., et al.
2014MNRAS.443..969C 46           X         1 3 40 Cosmological constraints from the double source plane lens SDSSJ0946+1006. COLLETT T.E. and AUGER M.W.
2014A&A...571A..16P 546           X         2 7 6542 Planck 2013 results. XVI. Cosmological parameters. PLANCK COLLABORATION, ADE P.A.R., AGHANIM N., et al.
2014A&A...571A..60S 238           X         6 5 7 Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping. SLUSE D. and TEWES M.
2015ApJ...798...95B viz 44           X         1 6 29 The structure of HE 1104-1805 from infrared to X-ray. BLACKBURNE J.A., KOCHANEK C.S., CHEN B., et al.
2015ApJ...799...48B 56       D     X         2 20 5 Strongly lensed jets, time delays, and the value of H0. BARNACKA A., GELLER M.J., DELL'ANTONIO I.P., et al.
2015ApJ...799..149J 40           X         1 64 23 Dark matter mass fraction in lens galaxies: new estimates from microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2015ApJ...799..168D 48           X         1 2 17 Strong lens time delay challenge. I. Experimental design. DOBLER G., FASSNACHT C.D., TREU T., et al.
2015MNRAS.446..759C 44           X         1 6 28 Modelling the extreme X-ray spectrum of IRAS 13224-3809. CHIANG C.-Y., WALTON D.J., FABIAN A.C., et al.
2015ApJ...805..161W 120           X         3 31 8 Broad iron emission from gravitationally lensed quasars observed by Chandra. WALTON D.J., REYNOLDS M.T., MILLER J.M., et al.
2015ApJ...806..251J 337       D     X C       8 74 17 Probing the dark matter radial profile in lens galaxies and the size of X-ray emitting region in quasars with microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2015ApJ...806..258M viz 45           X         1 6 34 A consistent picture emerges: a compact X-ray continuum emission region in the gravitationally lensed quasar SDSS J0924+0219. MacLEOD C.L., MORGAN C.W., MOSQUERA A., et al.
2015MNRAS.450.1042R 161           X         4 30 5 Radio monitoring campaigns of six strongly lensed quasars. RUMBAUGH N., FASSNACHT C.D., McKEAN J.P., et al.
2015ApJS..219...29M viz 498       D     X C       12 10653 13 A spectroscopic survey of the fields of 28 strong gravitational lenses. MOMCHEVA I.G., WILLIAMS K.A., COOL R.J., et al.
2015A&A...580A..38R 297       D     X C       7 50 19 H0 from ten well-measured time delay lenses. RATHNA KUMAR S., STALIN C.S. and PRABHU T.P.
2015MNRAS.452..115W 466   K A     X C       11 6 ~ Combining time delays and image positions for quadruple lenses: a moment approach. WITT H.J. and MAO S.
2015MNRAS.453L..58S 84             C       1 5 24 The offsets between galaxies and their dark matter in Λ cold dark matter. SCHALLER M., ROBERTSON A., MASSEY R., et al.
2015MNRAS.454..287J 161           X         4 45 14 Observations of radio-quiet quasars at 10-mas resolution by use of gravitational lensing. JACKSON N., TAGORE A.S., ROBERTS C., et al.
2016A&A...585A..88B 91           X         2 3 30 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XV. Assessing the achievability and precision of time-delay measurements. BONVIN V., TEWES M., COURBIN F., et al.
2016ApJ...820..116M 41           X         1 31 2 The Fe II emission in active galactic nuclei: excitation mechanisms and location of the emitting region. MARINELLO M., RODRIGUEZ-ARDILA A., GARCIA-RISSMANN A., et al.
2016MNRAS.457.3066T 44           X         1 2 7 On the use of shapelets in modelling resolved, gravitationally lensed images. TAGORE A.S. and JACKSON N.
2016MNRAS.457.4147F 41           X         1 8 2 Gravitational microlensing as a probe for dark matter clumps. FEDOROVA E., SLIUSAR V.M., ZHDANOV V.I., et al.
2016ApJ...824...53C 81           X         2 9 4 The wide-angle outflow of the lensed z = 1.51 AGN HS 0810+2554. CHARTAS G., CAPPI M., HAMANN F., et al.
2016MNRAS.458.3830A 16       D               2 11 7 Spectroscopy and high-resolution imaging of the gravitational lens SDSS J1206+4332. AGNELLO A., SONNENFELD A., SUYU S.H., et al.
2016MNRAS.459..573A 41           X         1 8 1 Kernel regression estimates of time delays between gravitationally lensed fluxes. AL OTAIBI S., TINO P., CUEVAS-TELLO J.C., et al.
2016PASJ...68S..27I 41           X         1 30 7 Origin of the broad iron line feature and the soft X-ray variation in Seyfert galaxies. ISO N., EBISAWA K., SAMESHIMA H., et al.
2016MNRAS.461..164I 97       D     X         3 15 8 On the origin of the flux ratio anomaly in quadruple lens systems. INOUE K.T.
2016MNRAS.461.4466C 41           X         1 14 2 Magnification relations of quad lenses and applications on Einstein crosses. CHU Z., LI G.L., LIN W.P., et al.
2016MNRAS.462.3255C 455           X C       10 2 16 Observational selection biases in time-delay strong lensing and their impact on cosmography. COLLETT T.E. and CUNNINGTON S.D.
2016MNRAS.462.3457C 758     A     X C       18 6 21 SHARP - III. First use of adaptive-optics imaging to constrain cosmology with gravitational lens time delays. CHEN G.C.-F., SUYU S.H., WONG K.C., et al.
2016ApJ...832...46M 16       D               1 58 2 Peculiar transverse velocities of galaxies from quasar microlensing. Tentative estimate of the peculiar velocity dispersion at z ∼ 0.5. MEDIAVILLA E., JIMENEZ-VICENTE J., MUNOZ J.A., et al.
2016ApJ...833..194W viz 24     A               1 3427 8 A spectroscopic survey of the fields of 28 strong gravitational lenses: the group catalog. WILSON M.L., ZABLUDOFF A.I., AMMONS S.M., et al.
2016A&ARv..24...11T 48           X         1 7 53 Time delay cosmography. TREU T. and MARSHALL P.J.
2017ApJ...835...74I viz 16       D               1 606 20 The complete infrared view of active galactic nuclei from the 70 month Swift/BAT catalog. ICHIKAWA K., RICCI C., UEDA Y., et al.
2016A&A...596A..77G viz 42           X         1 6 7 Gravitational lens system SDSS J1339+1310: microlensing factory and time delay. GOICOECHEA L.J. and SHALYAPIN V.N.
2017ApJ...836..141M 1159           X C       27 5 35 Quantifying environmental and line-of-sight effects in models of strong gravitational lens systems. McCULLY C., KEETON C.R., WONG K.C., et al.
2017ApJ...836..180L 4116 T K A D     X C       99 11 2 Molecular gas kinematics and star formation properties of the strongly-lensed quasar host galaxy RXS
J1131-1231.
LEUNG T.K.D., RIECHERS D.A. and PAVESI R.
2017ApJ...837...26C 2922     A D     X C       71 13 10 Measuring the innermost stable circular orbits of supermassive black holes. CHARTAS G., KRAWCZYNSKI H., ZALESKY L., et al.
2017A&A...600A..79A 12 2 Apparent quasar disc sizes in the "bird's nest" paradigm. ABOLMASOV P.
2017MNRAS.465.4634D 553       D S   X C       12 9 15 H0LiCOW. VI. Testing the fidelity of lensed quasar host galaxy reconstruction. DING X., LIAO K., TREU T., et al.
2017MNRAS.465.4895W 127           X         3 13 53 H0LiCOW - IV. Lens mass model of HE 0435-1223 and blind measurement of its time-delay distance for cosmology. WONG K.C., SUYU S.H., AUGER M.W., et al.
2017MNRAS.465.4914B viz 511     A D     X C       12 9 156 H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model. BONVIN V., COURBIN F., SUYU S.H., et al.
2017MNRAS.467.3970G 453           X C F     9 34 18 Strong lensing signatures of luminous structure and substructure in early-type galaxies. GILMAN D., AGNELLO A., TREU T., et al.
2017MNRAS.468.2590S 793   K A D     X C F     18 6 67 H0LiCOW - I. H0 Lenses in COSMOGRAIL's Wellspring: program overview. SUYU S.H., BONVIN V., COURBIN F., et al.
2017ApJ...843..118K 602   K A     X         15 3 5 Simulations of the Fe Kα energy spectra from gravitationally microlensed quasars. KRAWCZYNSKI H. and CHARTAS G.
2017ApJ...844...90B 124           X         3 9 17 Discovery of the first quadruple gravitationally lensed quasar candidate with Pan-STARRS. BERGHEA C.T., NELSON G.J., RUSU C.E., et al.
2017MNRAS.470.4838S viz 41           X         1 449 24 H0LiCOW - II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435-1223. SLUSE D., SONNENFELD A., RUMBAUGH N., et al.
2017ApJ...850...94W viz 16       D               1 27 7 A spectroscopic survey of the fields of 28 strong gravitational lenses: implications for H0. WILSON M.L., ZABLUDOFF A.I., KEETON C.R., et al.
2017ApJS..233...17R viz 99       D       C       2 865 96 BAT AGN spectroscopic survey. V. X-ray properties of the Swift/BAT 70-month AGN catalog. RICCI C., TRAKHTENBROT B., KOSS M.J., et al.
2017MNRAS.471.2013A 82           X         2 22 14 Quasar lenses and galactic streams: outlier selection and Gaia multiplet detection. AGNELLO A.
2017MNRAS.471.2224N 84           X         2 10 20 Probing dark matter substructure in the gravitational lens HE 0435-1223 with the WFC3 grism. NIERENBERG A.M., TREU T., BRAMMER G., et al.
2017MNRAS.471.3079H 42           X         1 2 3 Constraints on a possible evolution of mass density power-law index in strong gravitational lensing from cosmological data. HOLANDA R.F.L., PEREIRA S.H. and JAIN D.
2018MNRAS.473...80T 730       D     X C F     16 5 15 Microlensing makes lensed quasar time delays significantly time variable. TIE S.S. and KOCHANEK C.S.
2018MNRAS.473..210S 101       D     X         3 6 7 Improving time-delay cosmography with spatially resolved kinematics. SHAJIB A.J., TREU T. and AGNELLO A.
2018MNRAS.473..616T 293     A D     X C F     6 6 ~ Quasar microlensing models with constraints on the Quasar light curves. TIE S.S. and KOCHANEK C.S.
2018ApJ...853L..27D 527   K A     X C       12 9 5 Probing planets in extragalactic galaxies using quasar microlensing. DAI X. and GUERRAS E.
2017MNRAS.472...90D 1539       D S   X C F     35 146 9 H0LiCOW VII: cosmic evolution of the correlation between black hole mass and host galaxy luminosity. DING X., TREU T., SUYU S.H., et al.
2018MNRAS.474.4648S 43           X         1 1 1 On the choice of lens density profile in time delay cosmography. SONNENFELD A.
2018MNRAS.475.2086A 42           X         1 51 8 Quasar lenses and pairs in the VST-ATLAS and Gaia. AGNELLO A., SCHECHTER P.L., MORGAN N.D., et al.
2018MNRAS.476.5075S 393       D     X C       9 103 6 Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies. STACEY H.R., McKEAN J.P., ROBERTSON N.C., et al.
2018A&A...613A..34P 1697 T   A     X C       39 12 3 ALMA view of
RX J1131-1231: Sub-kpc CO (2-1) mapping of a molecular disk in a lensed star-forming quasar host galaxy.
PARAFICZ D., RYBAK M., McKEAN J.P., et al.
2018MNRAS.477.5657T 42           X         1 5 4 H0LiCOW VIII. A weak-lensing measurement of the external convergence in the field of the lensed quasar HE 0435-1223. TIHHONOVA O., COURBIN F., HARVEY D., et al.
2018ApJ...863...66L 42           X         1 3 ~ X-ray line profile variations during quasar microlensing. LEDVINA L., HEYROVSKY D. and DOVCIAK M.
2018A&A...616L..11K 42           X         1 10 6 Gaia GraL: Gaia DR2 gravitational lens systems. I. New quadruply imaged quasar candidates around known quasars. KRONE-MARTINS A., DELCHAMBRE L., WERTZ O., et al.
2018ApJ...867...69L 167           X         4 3 ~ Anomalies in time delays of lensed gravitational waves and dark matter substructures. LIAO K., DING X., BIESIADA M., et al.
2018A&A...618A..56D viz 401     A     X C       9 20 ~ Gaia GraL: Gaia DR2 gravitational lens systems. II. The known multiply imaged quasars. DUCOURANT C., WERTZ O., KRONE-MARTINS A., et al.
2018MNRAS.481..819G 334           X C F     6 3 ~ Probing the nature of dark matter by forward modelling flux ratios in strong gravitational lenses. GILMAN D., BIRRER S., TREU T., et al.
2018MNRAS.481.1115C 878     A D S   X C F     19 10 ~ Constraining the microlensing effect on time delays with a new time-delay prediction model in H0 measurements. CHEN G.C.-F., CHAN J.H.H., BONVIN V., et al.
2019ApJ...870...31I viz 17       D               1 606 ~ BAT AGN spectroscopic survey. XI. The covering factor of dust and gas in Swift/BAT active galactic nuclei. ICHIKAWA K., RICCI C., UEDA Y., et al.
2019ApJ...870..125K 1175   K A     X C       27 17 ~ The effect of microlensing on the observed X-ray energy spectra of gravitationally lensed quasars. KRAWCZYNSKI H., CHARTAS G. and KISLAT F.
2019ApJ...871..113L 43           X         1 4 ~ Hubble constant from LSST strong-lens time delays with microlensing systematics. LIAO K.
2019MNRAS.483.2275L 187       D     X C       4 16 ~ Reconciling the quasar microlensing disc size problem with a wind model of active galactic nucleus. LI Y.-P., YUAN F. and DAI X.
2019A&A...622A.165D viz 230       D     X C       5 17 ~ Gaia GraL: Gaia DR2 Gravitational Lens Systems. III. A systematic blind search for new lensed systems. DELCHAMBRE L., KRONE-MARTINS A., WERTZ O., et al.
2019MNRAS.484.4726B 255           X   F     5 8 ~ H0LiCOW - IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant. BIRRER S., TREU T., RUSU C.E., et al.
2019ApJ...873..101Z 17       D               1 30 ~ On constraining the growth history of massive black holes via their distribution on the spin-mass plane. ZHANG X. and LU Y.
2019MNRAS.485.3009H 43           X         1 14 ~ Strong lensing reveals jets in a sub-microJy radio-quiet quasar. HARTLEY P., JACKSON N., SLUSE D., et al.
2019ApJ...879...35D 43           X         1 29 ~ Constraining quasar relativistic reflection regions and spins with microlensing. DAI X., STEELE S., GUERRAS E., et al.
2019MNRAS.487.4492W 43           X         1 3 ~ Generalised model-independent characterisation of strong gravitational lenses - VI. The origin of the formalism intrinsic degeneracies and their influence on H0. WAGNER J.
2019A&A...628L...7T 85           X         2 4 ~ The Hubble constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae. TAUBENBERGER S., SUYU S.H., KOMATSU E., et al.
2019ApJ...883....3L 85           X         2 6 ~ Measuring the distances to quasars at high redshifts with strong lensing. LIAO K.
2019MNRAS.489.2525A 43           X         1 14 ~ Quasar lenses in the south: searches over the DES public footprint. AGNELLO A. and SPINIELLO C.
2019A&A...629A..97B viz 85           X         2 11 ~ COSMOGRAIL. XVIII. time delays of the quadruply lensed quasar WFI2033-4723. BONVIN V., MILLON M., CHAN J.H.-H., et al.
2019ApJ...885...70L 43           X         1 1 ~ The cosmic distance duality relation with strong lensing and gravitational waves: an opacity-free test. LIAO K.
2019ApJ...885...77B 341           X C       7 14 ~ Confirmation of planet-mass objects in extragalactic systems. BHATIANI S., DAI X. and GUERRAS E.
2019Sci...365.1134J 13 ~ A measurement of the Hubble constant from angular diameter distances to two gravitational lenses. JEE I., SUYU S.H., KOMATSU E., et al.
2019ApJ...886L..23L 315       D     X C       7 4 ~ A model-independent determination of the Hubble constant from lensed quasars and supernovae using Gaussian process regression. LIAO K., SHAFIELOO A., KEELEY R.E., et al.
2019MNRAS.489.2097B 85           X         2 8 ~ Astrometric requirements for strong lensing time-delay cosmography. BIRRER S. and TREU T.
2019MNRAS.490.1743C 2341     A D S   X C F     53 5 ~ A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging. CHEN G.C.-F., FASSNACHT C.D., SUYU S.H., et al.
2019ApJ...887..126G viz 43           X         1 13 ~ Gravitational lens system PS J0147+4630 (Andromeda's Parachute): main lensing galaxy and optical variability of the quasar images. GOICOECHEA L.J. and SHALYAPIN V.N.
2020A&A...633A.107H 757       D     X         18 9 ~ The signature of primordial black holes in the dark matter halos of galaxies. HAWKINS M.R.S.
2019PASJ...71...97M 43           X         1 6 ~ Concept for an X-ray telescope system with an angular resolution booster. MAEDA Y., IIZUKA R., HAYASHI T., et al.
2020MNRAS.492.5314N 44           X         1 11 ~ Double dark matter vision: twice the number of compact-source lenses with narrow-line lensing and the WFC3 grism. NIERENBERG A.M., GILMAN D., TREU T., et al.
2020MNRAS.493.1725K 17       D               1 6 ~ Overconstrained gravitational lens models and the Hubble constant. KOCHANEK C.S.
2020ApJ...892L..27B 17       D               1 7 ~ Could quasar lensing time delays hint to a core component in halos, instead of H0 tension? BLUM K., CASTORINA E. and SIMONOVIC M.
2020MNRAS.493.4783Y 1811     A     X C       41 1 ~ Time-delay cosmographic forecasts with strong lensing and JWST stellar kinematics. YILDIRIM A., SUYU S.H. and HALKOLA A.
2020ApJ...895L..29L 104       D     X         3 7 ~ Determining model-independent H0 and consistency tests. LIAO K., SHAFIELOO A., KEELEY R.E., et al.
2020ApJ...895...93C 17       D               1 16 ~ Quasar microlensing variability studies favor shallow accretion disk temperature profiles. CORNACHIONE M.A. and MORGAN C.W.
2020MNRAS.494.6072S 87           X         2 18 ~ STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354. SHAJIB A.J., BIRRER S., TREU T., et al.
2020MNRAS.495..544N 479   K A D     X C       11 3 ~ A quasar microlensing light-curve generator for LSST. NEIRA F., ANGUITA T. and VERNARDOS G.
2020MNRAS.495.2387S 174           X C       3 8 ~ SHARP - VI. Evidence for CO (1-0) molecular gas extended on kpc-scales in AGN star-forming galaxies at high redshift. SPINGOLA C., McKEAN J.P., VEGETTI S., et al.
2020MNRAS.496..138B 44           X         1 9 ~ VLA and ALMA observations of the lensed radio-quiet quasar SDSS J0924+0219: a molecular structure in a 3 µJy radio source. BADOLE S., JACKSON N., HARTLEY P., et al.
2020ApJ...897..127W 61       D     X         2 14 ~ Cosmology-independent estimate of the Hubble constant and spatial curvature using time-delay lenses and quasars. WEI J.-J. and MELIA F.
2020A&A...638A.136B 87           X         2 12 ~ X-raying winds in distant quasars: The first high-redshift wind duty cycle. BERTOLA E., DADINA M., CAPPI M., et al.
2020A&A...639A..57A 87           X         2 8 ~ Cosmic dissonance: are new physics or systematics behind a short sound horizon? ARENDSE N., WOJTAK R.J., AGNELLO A., et al.
2020A&A...639A.101M 192       D     X         5 7 ~ TDCOSMO. I. An exploration of systematic uncertainties in the inference of H0 from time-delay cosmography. MILLON M., GALAN A., COURBIN F., et al.
2020MNRAS.497L..56Y 218           X   F     4 5 ~ The first simultaneous measurement of Hubble constant and post-Newtonian parameter from time-delay strong lensing. YANG T., BIRRER S. and HU B.
2020A&A...640A.105M viz 609     A D S   X C       13 44 ~ COSMOGRAIL. XIX. Time delays in 18 strongly lensed quasars from 15 years of optical monitoring. MILLON M., COURBIN F., BONVIN V., et al.
2020ApJ...900..160L 61       D     X         2 6 ~ H0 reconstruction with Type Ia supernovae, baryon acoustic oscillation and gravitational lensing time delay. LYU M.-Z., HARIDASU B.S., VIEL M., et al.
2020MNRAS.498.1406T 44           X         1 6 ~ H0LiCOW - XI. A weak lensing measurement of the external convergence in the field of the lensed quasar B1608+656 using HST and Subaru deep imaging. TIHHONOVA O., COURBIN F., HARVEY D., et al.
2020MNRAS.498.1420W 801       D     X C       18 6 ~ H0LiCOW - XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. WONG K.C., SUYU S.H., CHEN G.C.-F., et al.
2020MNRAS.498.1440R 87           X         2 14 ~ H0LiCOW XII. Lens mass model of WFI2033 - 4723 and blind measurement of its time-delay distance and H0. RUSU C.E., WONG K.C., BONVIN V., et al.
2020MNRAS.498.2871H 44           X         1 27 ~ A 4 per cent measurement of H0 using the cumulative distribution of strong lensing time delays in doubly imaged quasars. HARVEY D.
2020A&A...642A.194G 453       D     X C       10 9 ~ TDCOSMO. III. Dark matter substructure meets dark energy. The effects of (sub)halos on strong-lensing measurements of H0. GILMAN D., BIRRER S. and TREU T.
2020MNRAS.499.2845H 192       D     X         5 28 ~ The KBC void and Hubble tension contradict ΛCDM on a Gpc scale - Milgromian dynamics as a possible solution. HASLBAUER M., BANIK I. and KROUPA P.
2020A&A...643A..10H 87           X         2 7 ~ SDSS J1004+4112: the case for a galaxy cluster dominated by primordial black holes. HAWKINS M.R.S.
2020A&A...643A.135C 897   K A S   X C       19 6 ~ Gravitational Lensing and Dynamics (GLaD): combined analysis to unveil properties of high-redshift galaxies. CHIRIVI G., YILDIRIM A., SUYU S.H., et al.
2020A&A...643A.165B 148       D     X C       3 40 ~ TDCOSMO. IV. Hierarchical time-delay cosmography - joint inference of the Hubble constant and galaxy density profiles. BIRRER S., SHAJIB A.J., GALAN A., et al.
2021MNRAS.501..269D 959       D S   X   F     20 8 ~ Testing the evolution of correlations between supermassive black holes and their host galaxies using eight strongly lensed quasars. DING X., TREU T., BIRRER S., et al.
2021MNRAS.501..784D 600       D S   X   F     12 8 ~ The Hubble constant from eight time-delay galaxy lenses. DENZEL P., COLES J.P., SAHA P., et al.
2021ApJ...906...28A 90           X         2 6 ~ The iron line profile from warped black hole accretion disks. ABARR Q. and KRAWCZYNSKI H.
2021ApJ...906...34K 90           X         2 3 ~ Generally applicable formalism for modeling the observable signatures of inflows, outflows, and moving coronal plasma close to Kerr black holes. KRAWCZYNSKI H.
2021A&A...645A..18D viz 18       D               1 1679 ~ Onboard catalogue of known X-ray sources for SVOM/ECLAIRs. DAGONEAU N., SCHANNE S., RODRIGUEZ J., et al.
2021A&A...647A.115C 582           X C       12 7 ~ Measuring accretion disk sizes of lensed quasars with microlensing time delay in multi-band light curves. CHAN J.H.H., ROJAS K., MILLON M., et al.
2021MNRAS.503.2179Q 45           X         1 7 ~ Measurements of the Hubble constant and cosmic curvature with quasars: ultracompact radio structure and strong gravitational lensing. QI J.-Z., ZHAO J.-W., CAO S., et al.
2021MNRAS.504.1340G 18       D               1 47 ~ Galaxy-lens determination of H0: the effect of the ellipse + shear modelling assumption. GOMER M.R. and WILLIAMS L.L.R.
2021ApJ...915....4L 18       D               2 34 ~ What makes quadruply lensed quasars quadruple? LUHTARU R., SCHECHTER P.L. and DE SOTO K.M.
2021ApJ...917...26S 45           X         1 18 ~ Resolving complex inner X-ray structure of the gravitationally lensed AGN MG B2016+112. SCHWARTZ D., SPINGOLA C. and BARNACKA A.
2021A&A...652A...7C 90               F     1 8 ~ TDCOSMO. VI. Distance measurements in time-delay cosmography under the mass-sheet transformation. CHEN G.C.-F., FASSNACHT C.D., SUYU S.H., et al.
2021MNRAS.508..755C 45           X         1 7 ~ Point spread function reconstruction of adaptive-optics imaging: meeting the astrometric requirements for time-delay cosmography. CHEN G.C.-F., TREU T., FASSNACHT C.D., et al.
2021MNRAS.508.4625H 108       D     X         3 12 ~ Using strong lensing to understand the microJy radio emission in two radio quiet quasars at redshift 1.7. HARTLEY P., JACKSON N., BADOLE S., et al.
2021MNRAS.508.5449D 90           X         2 35 ~ Bayesian analysis of quasar light curves with a running optimal average: new time delay measurements of COSMOGRAIL gravitationally lensed quasars. DONNAN F.R., HORNE K. and HERNANDEZ SANTISTEBAN J.V.
2021ApJ...922...70W 134       S   X         2 3 ~ "Worst-case" microlensing in the identification and modeling of lensed quasars. WEISENBACH L., SCHECHTER P.L. and PONTULA S.
2022MNRAS.511.3046H 47           X         1 2 ~ A forward-modelling method to infer the dark matter particle mass from strong gravitational lenses. HE Q., ROBERTSON A., NIGHTINGALE J., et al.
2022MNRAS.511.4417V 606           X C       12 9 ~ Simulating time-varying strong lenses. VERNARDOS G.
2022MNRAS.512.3163G 233           X   F     4 11 ~ The primordial matter power spectrum on sub-galactic scales. GILMAN D., BENSON A., BOVY J., et al.
2022A&A...659A.127V 93         O X         2 8 ~ TDCOSMO. VII. Boxyness/discyness in lensing galaxies: Detectability and impact on H0. VAN DE VYVERE L., GOMER M.R., SLUSE D., et al.
2022MNRAS.513.2349C 121     A         F     2 9 ~ SHARP - VIII. J0924+0219 lens mass distribution and time-delay prediction through adaptive-optics imaging. CHEN G.C.-F., FASSNACHT C.D., SUYU S.H., et al.
2022MNRAS.514.1433W 19       D               1 7 ~ Constraints on interacting dark energy models from time-delay cosmography with seven lensed quasars. WANG L.-F., ZHANG J.-H., HE D.-Z., et al.
2022ApJS..261....2K viz 93           X         2 233 ~ BASS. XXII. The BASS DR2 AGN Catalog and Data. KOSS M.J., RICCI C., TRAKHTENBROT B., et al.
2022ApJ...934..108C 47           X         1 7 ~ A New Way to Explore Cosmological Tensions Using Gravitational Waves and Strong Gravitational Lensing. CAO M.-D., ZHENG J., QI J.-Z., et al.
2022ApJ...939...37L 47           X         1 6 ~ Revisiting the Hubble Constant, Spatial Curvature, and Cosmography with Strongly Lensed Quasar and Hubble Parameter Observations. LIU T., CAO S., BIESIADA M., et al.
2022A&A...666A..11P viz 65       D     X         2 16 ~ X-ray illuminated accretion discs and quasar microlensing disc sizes. PAPADAKIS I.E., DOVCIAK M. and KAMMOUN E.S.

goto View the references in ADSLimited to 100


2022.12.07-02:07:25

© Université de Strasbourg/CNRS

    • Contact