other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
QSO J1120+0641 , the SIMBAD biblio (209 results) | C.D.S. - SIMBAD4 rel 1.8 - 2023.05.30CEST02:48:40 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2011Natur.474..616M | 1896 | A | X C | 46 | 5 | 937 | A luminous quasar at a redshift of z = 7.085. | MORTIOCK D.J., WARREN S.J., VENEMANS B.P., et al. | |
2011MNRAS.416L..70B | 1064 | T A | X C F | 24 | 2 | 141 |
How neutral is the intergalactic medium surrounding the redshift z = 7.085 quasar ULAS J1120+0641? |
BOLTON J.S., HAEHNELT M.G., WARREN S.J., et al. | |
2012MNRAS.419..390M | 157 | X F | 3 | 12 | 32 | Probabilistic selection of high-redshift quasars. | MORTLOCK D.J., PATEL M., WARREN S.J., et al. | ||
2012MNRAS.420.1764R | 196 | X F | 4 | 3 | 7 | Detecting the highest redshift (z > 8) quasi-stellar objects in a wide, near-infrared slitless spectroscopic survey. | ROCHE N., FRANZETTI P., GARILLI B., et al. | ||
2012MNRAS.421.1969R | 46 | X | 1 | 2 | 30 | Thermal constraints on the reionization of hydrogen by Population II stellar sources. | RASKUTTI S., BOLTON J.S., WYITHE J.S.B., et al. | ||
2012ApJ...751L..25V | 1002 | K A | X C | 25 | 12 | 114 | Detection of atomic carbon [C II] 158 µm and dust emission from a z = 7.1 quasar host galaxy. | VENEMANS B.P., McMAHON R.G., WALTER F., et al. | |
2012MNRAS.422.1690P | 55 | X | 1 | 1 | 33 | Supermassive black hole ancestors. | PETRI A., FERRARA A. and SALVATERRA R. | ||
2012ApJ...755L..15C | 41 | X | 1 | 1 | 4 | Quasi-star jets as unidentified gamma-ray sources. | CZERNY B., JANIUK A., SIKORA M., et al. | ||
2012ApJ...758...93F | 52 | X | 1 | 5 | 135 | CANDELS: the contribution of the observed galaxy population to cosmic reionization. | FINKELSTEIN S.L., PAPOVICH C., RYAN R.E., et al. | ||
2012RAA....12..865F | 156 | X | 4 | 33 | 14 | Observations of the first light and the epoch of reionization. | FAN X. | ||
2012Natur.492...79S | 32 | 1 | 64 | Extremely metal-poor gas at a redshift of 7. | SIMCOE R.A., SULLIVAN P.W., COOKSEY K.L., et al. | ||||
2012MNRAS.426.3178M | 127 | X C | 2 | 1 | 20 | Constraining quasar and intergalactic medium properties through bubble detection in redshifted 21-cm maps. | MAJUMDAR S., BHARADWAJ S. and CHOUDHURY T.R. | ||
2013ApJ...764...72M | 56 | D | X | 2 | 19 | 44 | High-z quasars in the rh= ct universe. | MELIA F. | |
2013AJ....145...55Y | 82 | X | 2 | 18 | 112 | Characterizing the mid-infrared extragalactic sky with WISE and SDSS. | YAN L., DONOSO E., TSAI C.-W., et al. | ||
2013MNRAS.428.3058S | 164 | X | 4 | 5 | 70 | Evidence of Gunn-Peterson damping wings in high-z quasar spectra: strengthening the case for incomplete reionization at z ∼ 6-7. | SCHROEDER J., MESINGER A. and HAIMAN Z. | ||
2013MNRAS.429.1554F | 42 | X | 1 | 1 | 6 | Growth and anisotropy of ionization fronts near high-redshift quasars in the MassiveBlack simulation. | FENG Y., CROFT R.A.C., DI MATTEO T., et al. | ||
2013MNRAS.429.1695B | 494 | A | X C F | 10 | 1 | 77 | On the rapid demise of Ly α emitters at redshift z ≳ 7 due to the increasing incidence of optically thick absorption systems. | BOLTON J.S. and HAEHNELT M.G. | |
2013MNRAS.432.2324L | 129 | X C | 2 | 1 | 22 | Matter matters: unphysical properties of the Rh = ct universe. | LEWIS G.F. | ||
2013ApJ...770...13W | 124 | X C | 2 | 7 | 84 | Redshift 6.4 host galaxies of 108 solar mass black holes: low star formation rate and dynamical mass. | WILLOTT C.J., OMONT A. and BERGERON J. | ||
2013MNRAS.432.2818G | 42 | X | 1 | 3 | 19 | The role of relativistic jets in the heaviest and most active supermassive black holes at high redshift. | GHISELLINI G., HAARDT F., DELLA CECA R., et al. | ||
2013ApJ...773...44W | 126 | X C | 2 | 11 | 178 | Star formation and gas kinematics of quasar host galaxies at z ∼ 6: new insights from ALMA. | WANG R., WAGG J., CARILLI C.L., et al. | ||
2013A&A...556A..97C | 39 | X | 1 | 17 | 23 | Towards equation of state of dark energy from quasar monitoring: reverberation strategy. | CZERNY B., HRYNIEWICZ K., MAITY I., et al. | ||
2013MNRAS.435.1198D ![]() |
42 | X | 1 | 8 | 56 | Metals in the IGM approaching the re-ionization epoch: results from X-shooter at the VLT. | D'ODORICO V., CUPANI G., CRISTIANI S., et al. | ||
2013MNRAS.435.1443M | 46 | X | 1 | 1 | 15 | Simulating extremely metal-poor gas and DLA metal content at redshift z ≃ 7. | MAIO U., CIARDI B. and MULLER V. | ||
2013MNRAS.435.3559T | 50 | X | 1 | 1 | 22 | The effect of baryonic streaming motions on the formation of the first supermassive black holes. | TANAKA T.L., LI M. and HAIMAN Z. | ||
2013ApJ...778..113B | 252 | D | X C | 6 | 18 | 17 | WISE detections of known QSOs at redshifts greater than six. | BLAIN A.W., ASSEF R., STERN D., et al. | |
2013ApJ...779...24V | 225 | A | X | 6 | 14 | 147 | Discovery of three z > 6.5 quasars in the VISTA kilo-degree infrared galaxy (VIKING) survey. | VENEMANS B.P., FINDLAY J.R., SUTHERLAND W.J., et al. | |
2013MNRAS.436.1023B | 112 | X | 1 | 1 | 146 | New measurements of the ionizing ultraviolet background over 2 < z < 5 and implications for hydrogen reionization. | BECKER G.D. and BOLTON J.S. | ||
2013MNRAS.436.1818F | 350 | A | S X C F | 6 | 1 | 25 | The host haloes of OI absorbers in the reionization epoch. | FINLATOR K., MUNOZ J.A., OPPENHEIMER B.D., et al. | |
2014AJ....147....6M | 900 | K A | X C | 22 | 3 | 14 | The highest redshift quasar at z = 7.085: a radio-quiet source. | MOMJIAN E., CARILLI C.L., WALTER F., et al. | |
2014MNRAS.438.1820K | 161 | X C | 3 | 6 | 28 | Probing the metallicity and ionization state of the circumgalactic medium at z ∼ 6 and beyond with OI absorption. | KEATING L.C., HAEHNELT M.G., BECKER G.D., et al. | ||
2014ApJ...782...69L | 82 | X | 2 | 7 | 50 | The coevolution of supermassive black holes and massive galaxies at high redshift. | LAPI A., RAIMUNDO S., AVERSA R., et al. | ||
2014MNRAS.438.2765C | 16 | D | 1 | 60 | 33 | The dust content of QSO hosts at high redshift. | CALURA F., GILLI R., VIGNALI C., et al. | ||
2014A&A...562A..35N ![]() |
16 | D | 1 | 29 | 25 | High-resolution C+ imaging of HDF 850.1 reveals a merging galaxy at z = 5.185. | NERI R., DOWNES D., COX P., et al. | ||
2014ApJ...784L..38M | 131 | X | 2 | 1 | 104 | Super-critical growth of massive black holes from stellar-mass seeds. | MADAU P., HAARDT F. and DOTTI M. | ||
2014A&A...563A..46M | 821 | T K A | X C | 19 | 2 | 12 |
X-ray observation of ULAS J1120+0641, the most distant quasar at z = 7.08. |
MORETTI A., BALLO L., BRAITO V., et al. | |
2014MNRAS.440L..91P | 1816 | T K A | X C | 44 | 2 | 22 |
X-rays from the redshift 7.1 quasar ULAS J1120+0641. |
PAGE M.J., SIMPSON C., MORTLOCK D.J., et al. | |
2014MNRAS.440.1662S | 116 | C | 1 | 1 | 75 | Inhomogeneous recombinations during cosmic reionization. | SOBACCHI E. and MESINGER A. | ||
2014ApJ...788L..30D | 42 | X | 1 | 4 | 23 | Dust formation, evolution, and obscuration effects in the very high-redshift universe. | DWEK E., STAGUHN J., ARENDT R.G., et al. | ||
2014ApJ...790..145D | 1453 | D | X C | 36 | 5 | 79 | Black hole mass estimates and emission-line properties of a sample of redshift z > 6.5 quasars. | DE ROSA G., VENEMANS B.P., DECARLI R., et al. | |
2014ApJ...792...34O | 41 | X | 1 | 34 | 68 | ALMA observation of 158 µm [C II] line and dust continuum of a z = 7 normally star-forming galaxy in the epoch of reionization. | OTA K., WALTER F., OHTA K., et al. | ||
2014MNRAS.442L..81F | 303 | A | S X | 7 | 4 | 10 | Do high-redshift quasars have powerful jets ? | FABIAN A.C., WALKER S.A., CELOTTI A., et al. | |
2013ARA&A..51..105C | 49 | X | 1 | 25 | 546 | Cool gas in high-redshift galaxies. | CARILLI C.L. and WALTER F. | ||
2014MNRAS.442.2036D | 70 | A | 1 | 1 | 92 | Feedback-regulated supermassive black hole seed formation. | DIJKSTRA M., FERRARA A. and MESINGER A. | ||
2014MNRAS.442.2809W | 31 | 20 | The effect of the quasar H1821+643 on the surrounding intracluster medium: revealing the underlying cooling flow. | WALKER S.A., FABIAN A.C., RUSSELL H.R., et al. | |||||
2014MNRAS.442.3454S | 1056 | T K A | S X C | 24 | 12 | 21 | No excess of bright galaxies around the redshift 7.1 quasar ULAS J1120+0641. | SIMPSON C., MORTLOCK D., WARREN S., et al. | |
2014ApJ...795L..29Y | 40 | X | 1 | 14 | 15 | SDSS J013127.34-032100.1: a newly discovered radio-loud quasar at z = 5.18 with extremely high luminosity. | YI W.-M., WANG F., WU X.-B., et al. | ||
2014MNRAS.443.2410F | 57 | X | 1 | 2 | 68 | Initial mass function of intermediate-mass black hole seeds. | FERRARA A., SALVADORI S., YUE B., et al. | ||
2014MNRAS.443.2831C | 40 | X | 1 | 57 | 90 | Spectroscopy of z ∼ 7 candidate galaxies: using Lyman α to constrain the neutral fraction of hydrogen in the high-redshift universe. | CARUANA J., BUNKER A.J., WILKINS S.M., et al. | ||
2014MNRAS.444.2442V | 41 | X | 1 | 17 | 38 | High-redshift quasars host galaxies: is there a stellar mass crisis ? | VALIANTE R., SCHNEIDER R., SALVADORI S., et al. | ||
2014MNRAS.445.2848G | 41 | X | 1 | 10 | 25 | First CO(17-16) emission line detected in a z > 6 quasar. | GALLERANI S., FERRARA A., NERI R., et al. | ||
2014ApJ...797...16K | 85 | X | 2 | 6 | 79 | Accelerated evolution of the Lyα luminosity function at z ≳ 7 revealed by the Subaru ultra-deep survey for Lyα emitters at z = 7.3. | KONNO A., OUCHI M., ONO Y., et al. | ||
2015Natur.518..512W | 94 | 3 | 282 | An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. | WU X.-B., WANG F., FAN X., et al. | ||||
2015ApJ...801..123W | 259 | D | X | 7 | 16 | 47 | Star formation rate and dynamical mass of 108 solar mass black hole host galaxies at redshift 6. | WILLOTT C.J., BERGERON J. and OMONT A. | |
2015A&A...575A..31B ![]() |
1110 | T K A | X C | 26 | 8 | 18 |
The spectral energy distribution of the redshift 7.1 quasar ULAS J1120+0641. |
BARNETT R., WARREN S.J., BANERJI M., et al. | |
2015ApJ...804...57S | 16 | D | 1 | 14 | 5 | Spatially resolving the kinematics of the ≲ 100 µas quasar broad-line region using spectroastrometry. | STERN J., HENNAWI J.F. and POTT J.-U. | ||
2015ApJ...804..118B | 96 | D | C | 2 | 56 | 23 | Constraining the radio-loud fraction of quasars at z > 5.5. | BANADOS E., VENEMANS B.P., MORGANSON E., et al. | |
2015ApJ...804..131P | 291 | X | 7 | 3 | 31 | Supermassive black holes from ultra-strongly self-interacting dark matter. | POLLACK J., SPERGEL D.N. and STEINHARDT P.J. | ||
2015ApJ...804..148V | 161 | X | 3 | 2 | 82 | The case for supercritical accretion onto massive black holes at high redshift. | VOLONTERI M., SILK J. and DUBUS G. | ||
2015ApJ...805L...8B | 206 | X C | 4 | 4 | 23 | Bright [C II] 158 µm emission in a quasar host galaxy at z = 6.54. | BANADOS E., DECARLI R., WALTER F., et al. | ||
2015A&A...577A..80M | 284 | A | D | O X | 8 | 13 | 45 | Dust production 680-850 million years after the Big Bang. | MICHALOWSKI M.J. |
2015A&A...579A..60S | 47 | X | 1 | 3 | 23 | The origin of the far-infrared continuum of z ∼ 6 quasars. A radiative transfer model for SDSS J1148+5251. | SCHNEIDER R., BIANCHI S., VALIANTE R., et al. | ||
2015ARA&A..53..631F | 43 | X | 1 | 38 | 136 | Near-field cosmology with extremely metal-poor stars. | FREBEL A. and NORRIS J.E. | ||
2015MNRAS.451L..16C | 44 | X | 1 | 8 | 34 | Two bright z > 6 quasars from VST ATLAS and a new method of optical plus mid-infrared colour selection. | CARNALL A.C., SHANKS T., CHEHADE B., et al. | ||
2015ApJ...807L...9W | 88 | C | 1 | 3 | 24 | An ultra-luminous quasar at z = 5.363 with a ten billion solar mass black hole and a metal-rich DLA at z ∼ 5. | WANG F., WU X.-B., FAN X., et al. | ||
2015MNRAS.451.1964S | 81 | X | 2 | 4 | 5 | SMBH growth parameters in the early Universe of Millennium and Millennium-II simulations. | SMOLE M., MICIC M. and MARTINOVIC N. | ||
2015MNRAS.451.2174T | 83 | X | 2 | 2 | 7 | Early cosmic merger of multiple black holes. | TAGAWA H., UMEMURA M., GOUDA N., et al. | ||
2015MNRAS.452.1105B | 3263 | T K A | X C | 79 | 1 | 28 |
Re-examining the case for neutral gas near the redshift 7 quasar ULAS J1120+0641. |
BOSMAN S.E.I. and BECKER G.D. | |
2015ApJ...814...18H | 48 | X | 1 | 1 | 8 | Early structure formation from primordial density fluctuations with a blue, tilted power spectrum. | HIRANO S., ZHU N., YOSHIDA N., et al. | ||
2015MNRAS.453L..88Z | 40 | X | 1 | 11 | 7 | Early science with the Large Millimeter Telescope: dust constraints in a z ∼ 9.6 galaxy. | ZAVALA J.A., MICHALOWSKI M.J., ARETXAGA I., et al. | ||
2015MNRAS.454..681K | 956 | A | X C | 23 | 2 | 19 | Probing the end of reionization with the near zones of z ≳ 6 QSOs. | KEATING L.C., HAEHNELT M.G., CANTALUPO S., et al. | |
2015MNRAS.453.2943C | 134 | X | 3 | 3 | 44 | Calibrating cosmological radiative transfer simulations with Ly α forest data: evidence for large spatial UV background fluctuations at z ∼ 5.6-5.8 due to rare bright sources. | CHARDIN J., HAEHNELT M.G., AUBERT D., et al. | ||
2015RAA....15.1945S | 120 | X | 3 | 108 | 31 | Thirty Meter Telescope Detailed Science Case: 2015. | SKIDMORE W. | ||
2016ApJ...816...37V | 207 | X C | 4 | 14 | 57 | Bright [C ii] and dust emission in three z > 6.6 quasar host galaxies observed by ALMA. | VENEMANS B.P., WALTER F., ZSCHAECHNER L., et al. | ||
2016ApJ...816...85L | 16 | D | 1 | 136 | 17 | The contribution of host galaxies to the infrared energy output of z≳5.0 quasars. | LYU J., RIEKE G.H. and ALBERTS S. | ||
2016MNRAS.456.2993L | 115 | X | 2 | 1 | 34 | Growing massive black holes through supercritical accretion of stellar-mass seeds. | LUPI A., HAARDT F., DOTTI M., et al. | ||
2016ApJ...819...24W ![]() |
57 | D | X | 2 | 796 | 26 | A survey of luminous high-redshift quasars with SDSS and WISE. I. Target selection and optical spectroscopy. | WANG F., WU X.-B., FAN X., et al. | |
2016A&A...588A..37H | 81 | O C | 1 | 33 | 15 | Abundances of carbon-enhanced metal-poor stars as constraints on their formation. | HANSEN C.J., NORDSTROM B., HANSEN T.T., et al. | ||
2016ApJ...823L..37A | 43 | X | 1 | 3 | 8 | Exploratory Chandra observation of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.30. | AI Y., DOU L., FAN X., et al. | ||
2016MNRAS.457.3356V | 50 | X | 1 | 3 | 28 | From the first stars to the first black holes. | VALIANTE R., SCHNEIDER R., VOLONTERI M., et al. | ||
2016MNRAS.458.3047P | 245 | A | X C | 5 | 2 | 37 | Super-Eddington growth of the first black holes. | PEZZULLI E., VALIANTE R. and SCHNEIDER R. | |
2016MNRAS.459.1432P | 206 | X C F | 3 | 9 | 33 | First identification of direct collapse black hole candidates in the early Universe in CANDELS/GOODS-S. | PACUCCI F., FERRARA A., GRAZIAN A., et al. | ||
2016ARA&A..54..313M | 83 | X | 2 | 25 | 64 | The evolution of the intergalactic medium. | McQUINN M. | ||
2016ApJ...828...26M | 124 | X | 3 | 25 | 64 | Subaru high-z exploration of low-luminosity quasars (SHELLQs). I. Discovery of 15 quasars and bright galaxies at 5.7 < z < 6.9. | MATSUOKA Y., ONOUE M., KASHIKAWA N., et al. | ||
2016MNRAS.462.3812T | 82 | X | 2 | 7 | 7 | Mergers of accreting stellar-mass black holes. | TAGAWA H., UMEMURA M. and GOUDA N. | ||
2016ApJ...833...21P | 42 | X | 1 | 13 | 17 | Observational constraints on first-star nucleosynthesis. II. Spectroscopy of an ultra metal-poor CEMP-no star. | PLACCO V.M., FREBEL A., BEERS T.C., et al. | ||
2017ApJ...834...83M | 58 | D | X | 2 | 24 | 19 | No overdensity of Lyman-alpha emitting galaxies around a quasar at z ∼ 5.7. | MAZZUCCHELLI C., BANADOS E., DECARLI R., et al. | |
2017ApJ...836L...1T | 412 | A | D | X | 11 | 21 | 13 | On the accretion rates and radiative efficiencies of the highest-redshift quasars. | TRAKHTENBROT B., VOLONTERI M. and NATARAJAN P. |
2017ApJ...836..217C | 123 | X C | 2 | 2 | 1 | Constraint on matter power spectrum on 106-109 M☉ scales from τ_e. | CEN R. | ||
2017ApJ...837..146V | 828 | K A | D | X C | 20 | 5 | 28 | The compact, ∼1 kpc host galaxy of a quasar at a redshift of 7.1. | VENEMANS B.P., WALTER F., DECARLI R., et al. |
2017MNRAS.464.1137B | 82 | X | 2 | 2 | 1 | Radiation-damped profiles of extremely high column density neutral hydrogen: implications of cosmic reionization. | BACH K. | ||
2017MNRAS.466.1814G | 51 | X | 1 | 1 | 10 | Lyα emission-line reconstruction for high-z QSOs. | GREIG B., MESINGER A., McGREER I.D., et al. | ||
2017MNRAS.466.2131P | 44 | X | 1 | 5 | 15 | Faint progenitors of luminous z ∼ 6 quasars: Why do not we see them? | PEZZULLI E., VALIANTE R., OROFINO M.C., et al. | ||
2017ApJ...840...24E | 41 | X | 1 | 35 | 30 | Implications of z ∼ 6 quasar proximity zones for the epoch of reionization and quasar lifetimes. | EILERS A.-C., DAVIES F.B., HENNAWI J.F., et al. | ||
2017A&A...601A..16B | 1880 | T K A | X C | 44 | 5 | 15 |
Observations of the Lyman series forest towards the redshift 7.1 quasar ULAS J1120+0641. |
BARNETT R., WARREN S.J., BECKER G.D., et al. | |
2017ApJ...842L..15S | 44 | X | 1 | 8 | 27 | ISM properties of a massive dusty star-forming galaxy discovered at z ∼ 7. | STRANDET M.L., WEISS A., DE BREUCK C., et al. | ||
2017MNRAS.465.4838G | 382 | A | X C | 8 | 1 | 28 | The global history of reionization. | GREIG B. and MESINGER A. | |
2017MNRAS.465.5016N | 48 | X | 1 | 1 | 7 | Do stellar winds prevent the formation of supermassive stars by accretion? | NAKAUCHI D., HOSOKAWA T., OMUKAI K., et al. | ||
2017A&A...602A..84C | 41 | X | 1 | 8 | 1 | Turbulent gas accretion between supermassive black-holes and star-forming rings in the circumnuclear disk. | CHAMANI W., DORSCHNER S. and SCHLEICHER D.R.G. | ||
2017MNRAS.466.4239G | 2405 | T A | S X C | 55 | 1 | 34 |
Are we witnessing the epoch of reionization at z=7.1 from the spectrum of J1120+0641? |
GREIG B., MESINGER A., HAIMAN Z., et al. | |
2017MNRAS.467.3590G | 42 | X | 1 | 4 | 7 | X-ray spectroscopy of the z = 6.4 quasar SDSS J1148+5251. | GALLERANI S., ZAPPACOSTA L., OROFINO M.C., et al. | ||
2017MNRAS.468..109W | 41 | X | 1 | 9 | 3 | CMB-induced radio quenching of high-redshift jetted AGNs with highly magnetic hotspots. | WU J., GHISELLINI G., HODGES-KLUCK E., et al. | ||
2017MNRAS.468.3718K | 211 | X | 5 | 2 | 11 | The concerted impact of galaxies and QSOs on the ionization and thermal state of the intergalactic medium. | KAKIICHI K., GRAZIANI L., CIARDI B., et al. | ||
2017MNRAS.468.4702R | 83 | X | 2 | 13 | 22 | Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations. | REED S.L., McMAHON R.G., MARTINI P., et al. | ||
2017RAA....17...52G | 41 | X | 1 | 61 | ~ | Weak gravitational lensing of quantum perturbed lukewarm black holes and cosmological constant effect. | GHAFFARNEJAD H. and MOJAHEDI M.A. | ||
2017ApJ...845..154V | 83 | X | 2 | 15 | 15 | Molecular gas in three z ∼ 7 quasar host galaxies. | VENEMANS B.P., WALTER F., DECARLI R., et al. | ||
2017A&A...603A.128N | 494 | A | D | X C | 12 | 30 | 14 | The X-ray properties of z ∼ 6 luminous quasars. | NANNI R., VIGNALI C., GILLI R., et al. |
2017ApJ...846..129F | 222 | D | X C | 5 | 6 | 2 | Unseen progenitors of luminous high-z quasars in the Rh = ct universe. | FATUZZO M. and MELIA F. | |
2017MNRAS.470.1587A | 412 | S X C F | 7 | 6 | 1 | XMM-Newton observation of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.326. | AI Y., FABIAN A.C., FAN X., et al. | ||
2017MNRAS.470.1919B | 835 | T K A | D | X C F | 18 | 1 | 12 |
A deep search for metals near redshift 7: the line of sight towards ULAS J1120+0641. |
BOSMAN S.E.I., BECKER G.D., HAEHNELT M.G., et al. |
2017ApJ...849...91M | 100 | D | C | 15 | 22 | 28 | Physical properties of 15 quasars at z >= 6.5. | MAZZUCCHELLI C., BANADOS E., VENEMANS B.P., et al. | |
2017ApJ...850L..42P | 91 | X | 2 | 1 | 9 | Conditions for optimal growth of black hole seeds. | PACUCCI F., NATARAJAN P., VOLONTERI M., et al. | ||
2017ApJ...851L...8V | 125 | X | 3 | 9 | 26 | Copious amounts of dust and gas in a z = 7.5 quasar host galaxy. | VENEMANS B.P., WALTER F., DECARLI R., et al. | ||
2017MNRAS.471.2143L | 16 | D | 1 | 21 | ~ | [C I], [C II] and CO emission lines as a probe for α variations at low and high redshifts. | LEVSHAKOV S.A., NG K.-W., HENKEL C., et al. | ||
2018MNRAS.473..765C | 1574 | T A | X C F | 35 | 2 | 4 |
A tale of seven narrow spikes and a long trough: constraining the timing of the percolation of H II bubbles at the tail end of reionization with ULAS J1120+0641. |
CHARDIN J., HAEHNELT M.G., BOSMAN S.E.I., et al. | |
2018Natur.553..473B | 99 | 3 | 297 | An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. | BANADOS E., VENEMANS B.P., MAZZUCCHELLI C., et al. | ||||
2018ApJ...854....4B | 43 | X | 1 | 2 | 3 | SMBH seeds: model discrimination with high-energy emission based on scaling relation evolution. | BEN-AMI S., VIKHLININ A. and LOEB A. | ||
2018ApJ...854...97D | 17 | D | 1 | 50 | 18 | An ALMA [C II] survey of 27 quasars at z > 5.94. | DECARLI R., WALTER F., VENEMANS B.P., et al. | ||
2018MNRAS.474.2757H | 51 | X | 1 | 2 | 18 | The evolution of supermassive Population III stars. | HAEMMERLE L., WOODS T.E., KLESSEN R.S., et al. | ||
2018ApJ...856....2M | 260 | X C | 5 | 3 | 27 | The Universe is reionizing at z ∼ 7: Bayesian inference of the IGM neutral fraction using Lyα emission from galaxies. | MASON C.A., TREU T., DIJKSTRA M., et al. | ||
2018MNRAS.477.3694B | 125 | X | 3 | 3 | 1 | Maximally rotating supermassive stars at the onset of collapse: the perturbative effects of gas pressure, magnetic fields, dark matter, and dark energy. | BUTLER S.P., LIMA A.R., BAUMGARTE T.W., et al. | ||
2018MNRAS.477.5501K | 180 | X | 4 | 1 | 13 | Spatial fluctuations of the intergalactic temperature-density relation after hydrogen reionization. | KEATING L.C., PUCHWEIN E. and HAEHNELT M.G. | ||
2018MNRAS.478.1649C | 42 | X | 1 | 14 | 1 | Two more, bright, z > 6 quasars from VST ATLAS and WISE. | CHEHADE B., CARNALL A.C., SHANKS T., et al. | ||
2018ApJ...863...11M | 44 | X | 1 | 1 | 2 | Results from EDGES HigH-band. II. Constraints on parameters of early galaxies. | MONSALVE R.A., GREIG B., BOWMAN J.D., et al. | ||
2018MNRAS.478.5564B | 44 | X | 1 | 2 | 4 | Imprints of quasar duty cycle on the 21-cm signal from the Epochof Reionization. | BOLGAR F., EAMES E., HOTTIER C., et al. | ||
2018ApJ...864...53E | 42 | X | 1 | 49 | 6 | The opacity of the intergalactic medium measured along quasar sightlines at z ∼ 6. | EILERS A.-C., DAVIES F.B. and HENNAWI J.F. | ||
2018ApJ...864..142D | 1639 | A | D | S X C | 38 | 2 | 19 | Quantitative constraints on the reionization history from the IGM damping wing signature in two quasars at z > 7. | DAVIES F.B., HENNAWI J.F., BANADOS E., et al. |
2018ApJ...864..143D | 1237 | A | X | 30 | 10 | 6 | Predicting quasar continua near Lyα with principal component analysis. | DAVIES F.B., HENNAWI J.F., BANADOS E., et al. | |
2018MNRAS.479.1055B | 142 | D | X F | 3 | 60 | 14 | New constraints on Lyman-α opacity with a sample of 62 quasars at z > 5.7. | BOSMAN S.E.I., FAN X., JIANG L., et al. | |
2018MNRAS.479.2079C | 45 | X | 1 | 4 | 12 | Quenching star formation with quasar outflows launched by trapped IR radiation. | COSTA T., ROSDAHL J., SIJACKI D., et al. | ||
2018ApJ...865..126S | 615 | A | X C | 14 | 3 | 16 | Radiation hydrodynamical simulations of the first quasars. | SMIDT J., WHALEN D.J., JOHNSON J.L., et al. | |
2018MNRAS.479.4320G | 321 | A | X C | 7 | 1 | 3 | X-ray ionization of the intergalactic medium by quasars. | GRAZIANI L., CIARDI B. and GLATZLE M. | |
2018A&A...617A.127P | 67 | A | X | 2 | 20 | ~ | High-redshift quasar selection from the CFHQSIR survey. | PIPIEN S., CUBY J.-G., BASA S., et al. | |
2018MNRAS.480..681O | 42 | X | 1 | 3 | ~ | Growth problems of stellar black holes in early galaxies. | OROFINO M.C., FERRARA A. and GALLERANI S. | ||
2018ApJ...866..159V | 17 | D | 1 | 98 | 1 | Dust emission in an accretion-rate-limited sample of z >= 6 quasars. | VENEMANS B.P., DECARLI R., WALTER F., et al. | ||
2019ApJ...870L..11F | 85 | C | 1 | 8 | ~ | The discovery of a gravitationally lensed quasar at z = 6.51. | FAN X., WANG F., YANG J., et al. | ||
2019MNRAS.483.4080R | 43 | X | 1 | 4 | ~ | Dark matter model favoured by reionization data: 7 keV sterile neutrino versus cold dark matter. | RUDAKOVSKYI A. and IAKUBOVSKYI D. | ||
2019MNRAS.484.5094G | 724 | X C F | 15 | 2 | ~ | Constraints on reionization from the z = 7.5 QSO ULASJ1342+0928. | GREIG B., MESINGER A. and BANADOS E. | ||
2019MNRAS.484.5142P | 17 | D | 1 | 7 | ~ | A new bright z = 6.82 quasar discovered with VISTA: VHS J0411-0907. | PONS E., McMAHON R.G., SIMCOE R.A., et al. | ||
2019ApJ...872L..29S | 85 | C | 1 | 26 | ~ | Black versus dark: rapid growth of supermassive black holes in dark matter halos at z ∼ 6. | SHIMASAKU K. and IZUMI T. | ||
2019ApJ...875...67M | 255 | X | 6 | 2 | ~ | Results from EDGES HigH-band. III. New constraints on parameters of the early universe. | MONSALVE R.A., FIALKOV A., BOWMAN J.D., et al. | ||
2019ApJ...876...31G | 579 | A | S X | 13 | 1 | ~ | Constraining the tail end of Reionization using Lyα transmission spikes. | GARALDI E., GNEDIN N.Y. and MADAU P. | |
2019A&A...625A..23C | 1320 | A | D | X C | 31 | 5 | ~ | Black hole mass and spin estimates of the most distant quasars. | CAMPITIELLO S., CELOTTI A., GHISELLINI G., et al. |
2019A&A...626A..60A ![]() |
162 | ~ | F-GAMMA: Multi-frequency radio monitoring of Fermi blazars. The 2.64 to 43 GHz Effelsberg light curves from 2007-2015. | ANGELAKIS E., FUHRMANN L., MYSERLIS I., et al. | |||||
2019MNRAS.487.1160B | 43 | X | 1 | 2 | ~ | Bayesian model selection with future 21cm observations of the epoch of reionization. | BINNIE T. and PRITCHARD J.R. | ||
2019MNRAS.487.3305M ![]() |
17 | D | 1 | 230 | ~ | New constraints on quasar evolution: broad-line velocity shifts over 1.5 <= z <= 7.5. | MEYER R.A., BOSMAN S.E.I. and ELLIS R.S. | ||
2019ApJ...879..117K | 17 | D | 1 | 52 | ~ | High star formation rates of low Eddington ratio quasars at z >= 6. | KIM Y. and IM M. | ||
2019MNRAS.488.1035K ![]() |
43 | X | 1 | 6 | ~ | Evolution of the AGN UV luminosity function from redshift 7.5. | KULKARNI G., WORSECK G. and HENNAWI J.F. | ||
2019A&A...627A..72G | 43 | X | 1 | 12 | ~ | A NuSTAR view of powerful γ-ray loud blazars. | GHISELLINI G., PERRI M., COSTAMANTE L., et al. | ||
2019ApJ...881L..23B | 43 | X | 1 | 2 | ~ | The z = 7.54 quasar ULAS J1342+0928 is hosted by a galaxy merger. | BANADOS E., NOVAK M., NEELEMAN M., et al. | ||
2019MNRAS.488.4004L | 43 | X | 1 | 2 | ~ | High-redshift quasars and their host galaxies - I. Kinematical and dynamical properties and their tracers. | LUPI A., VOLONTERI M., DECARLI R., et al. | ||
2019MNRAS.488.4195D | 85 | X | 2 | 4 | ~ | Maximally rotating supermassive stars at the onset of collapse: effects of gas pressure. | DENNISON K.A., BAUMGARTE T.W. and SHAPIRO S.L. | ||
2019ApJ...882...77C | 230 | D | X C | 5 | 73 | ~ | Heavy element absorption systems at 5.0 < z < 6.8: metal-poor neutral gas and a diminishing signature of highly ionized circumgalactic matter. | COOPER T.J., SIMCOE R.A., COOKSEY K.L., et al. | |
2019ApJ...882..144K | 85 | C | 4 | 11 | ~ | Rapidly accreting black hole of the Lyα-luminous quasar PSOJ006.1240+39.2219. | KOPTELOVA E., HWANG C.-Y., MALKAN M.A., et al. | ||
2019MNRAS.489.1206H | 145 | D | X C | 3 | 26 | ~ | The diverse galaxy counts in the environment of high-redshift massive black holes in Horizon-AGN. | HABOUZIT M., VOLONTERI M., SOMERVILLE R.S., et al. | |
2019A&A...630A..59B ![]() |
60 | D | X | 2 | 51 | ~ | Widespread QSO-driven outflows in the early Universe. | BISCHETTI M., MAIOLINO R., CARNIANI S., et al. | |
2019A&A...630A.118V | 60 | D | X | 2 | 28 | ~ | The X-ray properties of z > 6 quasars: no evident evolution of accretion physics in the first Gyr of the Universe. | VITO F., BRANDT W.N., BAUER F.E., et al. | |
2019ApJ...884L..19D | 877 | A | X C | 20 | 2 | ~ | Evidence for low radiative efficiency or highly obscured growth of z > 7 quasars. | DAVIES F.B., HENNAWI J.F. and EILERS A.-C. | |
2019A&A...631A..85E | 255 | X C | 5 | 2 | ~ | Euclid preparation. V. Predicted yield of redshift 7 < z < 9 quasars from the wide survey. | EUCLID COLLABORATION, BARNETT R., WARREN S.J., et al. | ||
2019A&A...631A.120S | 128 | X C | 2 | 53 | ~ | Quasars as standard candles II. The non-linear relation between UV and X-ray emission at high redshifts. | SALVESTRINI F., RISALITI G., BISOGNI S., et al. | ||
2019ApJ...887...40W | 43 | X | 1 | 9 | ~ | Resolving the interstellar medium in the nuclear region of two z = 5.78 quasar host galaxies with ALMA. | WANG R., SHAO Y., CARILLI C.L., et al. | ||
2019MNRAS.490.2542P ![]() |
60 | D | X | 2 | 2245 | ~ | Unveiling the weak radio quasar population at z≥4. | PERGER K., FREY S., GABANYI K.E., et al. | |
2019ApJ...887..174V | 43 | X | 1 | 3 | ~ | Submillimeter signatures from growing supermassive black holes before reionization. | VASILIEV E.O. and SHCHEKINOV Y.A. | ||
2020ApJ...888..112M | 44 | X | 1 | 1 | ~ | Observing the redshifted 21 cm signal around a bright QSO at z ∼ 10. | MA Q.-B., CIARDI B., KAKIICHI K., et al. | ||
2019PASJ...71..109H | 85 | C | 1 | 25 | ~ | Detections of [O III] 88 μm in two quasars in the reionization epoch. | HASHIMOTO T., INOUE A.K., TAMURA Y., et al. | ||
2019PASJ...71..111I | 43 | X | 1 | 16 | ~ | Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). VIII. A less biased view of the early co-evolution of black holes and host galaxies. | IZUMI T., ONOUE M., MATSUOKA Y., et al. | ||
2020MNRAS.491.3884P | 287 | A | X C | 6 | 14 | ~ | X-ray properties of z >= 6.5 quasars. | PONS E., McMAHON R.G., BANERJI M., et al. | |
2020MNRAS.493.4256D | 2290 | A | X C | 52 | 7 | ~ | Reionization history constraints from neural network based predictions of high-redshift quasar continua. | DUROVCIKOVA D., KATZ H., BOSMAN S.E.I., et al. | |
2020ApJ...892..109N | 44 | X | 1 | 2 | ~ | Rapid reionization by the oligarchs: the case for massive, uv-bright, star-forming galaxies with high escape fractions. | NAIDU R.P., TACCHELLA S., MASON C.A., et al. | ||
2020MNRAS.493.5181T | 44 | X | 1 | 10 | ~ | RAiSE X: searching for radio galaxies in X-ray surveys. | TURNER R.J. and SHABALA S.S. | ||
2020MNRAS.494..789R | 44 | X | 1 | 17 | ~ | The near and mid-infrared photometric properties of known redshift z >= 5 quasars. | ROSS N.P. and CROSS N.J.G. | ||
2020ApJ...895...74N | 17 | D | 1 | 41 | ~ | ALMA observations of quasar host galaxies at z ≃ 4.8. | NGUYEN N.H., LIRA P., TRAKHTENBROT B., et al. | ||
2020ApJ...895..130B | 87 | X | 2 | 16 | ~ | Cosmic spin and mass evolution of black holes and its impact. | BHATTACHARYYA D. and MANGALAM A. | ||
2020MNRAS.494.5091G | 44 | X | 1 | 6 | ~ | Probing the thermal state of the intergalactic medium at z > 5 with the transmission spikes in high-resolution Ly α forest spectra. | GAIKWAD P., RAUCH M., HAEHNELT M.G., et al. | ||
2020A&A...637A..84P | 17 | D | 1 | 32 | ~ | The ALMA view of the high-redshift relation between supermassive black holes and their host galaxies. | PENSABENE A., CARNIANI S., PERNA M., et al. | ||
2020ApJ...896...23W | 261 | X C | 5 | 6 | ~ | A significantly neutral intergalactic medium around the luminous z = 7 quasar J0252-0503. | WANG F., DAVIES F.B., YANG J., et al. | ||
2020ApJ...896..151R | 44 | X | 1 | 44 | ~ | Survey of extremely high-velocity outflows in Sloan Digital Sky Survey quasars. | RODRIGUEZ HIDALGO P., KHATRI A.M., HALL P.B., et al. | ||
2020MNRAS.496..888N | 61 | D | X | 2 | 8 | ~ | Effects of the Hubble parameter on the cosmic growth of the first quasars. | NUNES R.C. and PACUCCI F. | |
2020ApJ...897L..14Y | 87 | C | 1 | 5 | ~ | Poniua'ena: a luminous z > 7.5 quasar hosting a 1.5 billion solar mass black hole. | YANG J., WANG F., FAN X., et al. | ||
2020MNRAS.498.6083E | 87 | X | 2 | 2 | ~ | Large-scale simulations of H and He reionization and heating driven by stars and more energetic sources. | EIDE M.B., CIARDI B., GRAZIANI L., et al. | ||
2020A&A...642A.150L ![]() |
61 | D | X | 2 | 2429 | ~ | Quasars as standard candles. III. Validation of a new sample for cosmological studies. | LUSSO E., RISALITI G., NARDINI E., et al. | |
2020ApJ...903L..18Z | 17 | D | 1 | 14 | ~ | Effects of spin on constraining the seeds and growth of >=109M☉ supermassive black holes in z > 6.5 quasars. | ZHANG X., LU Y. and FANG T. | ||
2020ApJ...904..130V | 104 | D | S | 4 | 54 | ~ | Kiloparsec-scale ALMA imaging of [C II] and dust continuum emission of 27 quasar host galaxies at z ∼ 6. | VENEMANS B.P., WALTER F., NEELEMAN M., et al. | |
2020ApJ...904..131N | 17 | D | 1 | 28 | ~ | No evidence for [C II] halos or high-velocity outflows in z >= 6 quasar host galaxies. | NOVAK M., VENEMANS B.P., WALTER F., et al. | ||
2020ApJ...905...51S ![]() |
409 | D | S X C | 8 | 42 | ~ | The X-SHOOTER/ALMA sample of quasars in the epoch of reionization. I. NIR spectral modeling, iron enrichment, and broad emission line properties. | SCHINDLER J.-T., FARINA E.P., BANADOS E., et al. | |
2021ApJ...906..124Z | 45 | X | 1 | 1 | ~ | Nonequilibrium temperature evolution of ionization fronts during the epoch of reionization. | ZENG C. and HIRATA C.M. | ||
2021ApJ...907L...1W | 90 | C | 1 | 7 | ~ | A luminous quasar at redshift 7.642. | WANG F., YANG J., FAN X., et al. | ||
2021ApJ...908...53W | 332 | D | X | 8 | 13 | ~ | Revealing the accretion physics of supermassive black holes at redshift z ∼ 7 with Chandra and infrared observations. | WANG F., FAN X., YANG J., et al. | |
2021MNRAS.501.4289Z | 108 | D | F | 2 | 12 | ~ | High-redshift SMBHs can grow from stellar-mass seeds via chaotic accretion. | ZUBOVAS K. and KING A. | |
2021MNRAS.503.2077B | 18 | D | 1 | 21 | ~ | A comparison of quasar emission reconstruction techniques for z >= 5.0 Lyman α and Lyman β transmission. | BOSMAN S.E.I., DUROVCIKOVA D., DAVIES F.B., et al. | ||
2021ApJ...911..120C | 45 | X | 1 | 3 | ~ | Enhanced X-ray emission from the most radio-powerful quasar in the Universe's first billion years. | CONNOR T., BANADOS E., STERN D., et al. | ||
2021ApJ...911..141N | 18 | D | 4 | 28 | ~ | The kinematics of z >= 6 quasar host galaxies. | NEELEMAN M., NOVAK M., VENEMANS B.P., et al. | ||
2021A&A...649A.160V | 45 | X | 1 | 3 | ~ | Stellar collisions in flattened and rotating Population III star clusters. | VERGARA M.Z.C., SCHLEICHER D.R.G., BOEKHOLT T.C.N., et al. | ||
2021ApJ...914...36I | 242 | D | X | 6 | 15 | ~ | Subaru high-z exploration of low-luminosity quasars (SHELLQs). XIII. Large-scale feedback and star formation in a low-luminosity quasar at z = 7.07 on the local black hole to host mass relation. | IZUMI T., MATSUOKA Y., FUJIMOTO S., et al. | |
2021ApJ...914L..26F | 18 | D | 1 | 10 | ~ | Seeding supermassive black holes with self-interacting dark matter: a unified scenario with baryons. | FENG W.-X., YU H.-B. and ZHONG Y.-M. | ||
2021MNRAS.506.2963H | 90 | X | 2 | 3 | ~ | Probing reionization and early cosmic enrichment with the Mg II forest. | HENNAWI J.F., DAVIES F.B., WANG F., et al. | ||
2021MNRAS.508.1262M | 45 | X | 1 | 2 | ~ | Extracting the astrophysics of reionization from the Lyα forest power spectrum: a first forecast. | MONTERO-CAMACHO P. and MAO Y. | ||
2021ApJ...919..120M | 45 | X | 1 | 7 | ~ | The evolution of the Lyman-alpha luminosity function during reionization. | MORALES A.M., MASON C.A., BRUTON S., et al. | ||
2022MNRAS.509.1885P | 93 | F | 1 | 7 | ~ | The search for the farthest quasar: consequences for black hole growth and seed models. | PACUCCI F. and LOEB A. | ||
2021ApJ...923..223Z | 45 | X | 1 | 55 | ~ | Chasing the tail of cosmic reionization with dark gap statistics in the Lyα forest over 5 < z < 6. | ZHU Y., BECKER G.D., BOSMAN S.E.I., et al. | ||
2022MNRAS.512.5390G | 1101 | A | S X C F | 21 | 4 | ~ | IGM damping wing constraints on reionization from covariance reconstruction of two z >= 7 QSOs. | GREIG B., MESINGER A., DAVIES F.B., et al. | |
2022ApJ...927..237I | 47 | X | 1 | 4 | ~ | Rapid Growth of Seed Black Holes during Early Bulge Formation. | INAYOSHI K., NAKATANI R., TOYOUCHI D., et al. | ||
2022Natur.604..261F | 93 | X | 2 | 12 | ~ | A dusty compact object bridging galaxies and quasars at cosmic dawn. | FUJIMOTO S., BRAMMER G.B., WATSON D., et al. | ||
2022A&A...662A..60D | 47 | X | 1 | 40 | ~ | Molecular gas in z ∼ 6 quasar host galaxies. | DECARLI R., PENSABENE A., VENEMANS B., et al. | ||
2022ApJ...933..236Z | 47 | X | 1 | 1 | ~ | Implicit Likelihood Inference of Reionization Parameters from the 21 cm Power Spectrum. | ZHAO X., MAO Y. and WANDELT B.D. | ||
2022A&A...663A.159V | 19 | D | 1 | 10 | ~ | An X-ray fading, UV brightening QSO at z ≃ 6. | VITO F., MIGNOLI M., GILLI R., et al. | ||
2022MNRAS.515.3224N | 252 | D | X F | 5 | 16 | ~ | Paving the way forEuclid and JWST via probabilistic selection of high-redshift quasars. | NANNI R., HENNAWI J.F., WANG F., et al. | |
2022ApJ...941..106F | 252 | D | X | 6 | 41 | ~ | The X-shooter/ALMA Sample of Quasars in the Epoch of Reionization. II. Black Hole Masses, Eddington Ratios, and the Formation of the First Quasars. | FARINA E.P., SCHINDLER J.-T., WALTER F., et al. | |
2023ApJ...942...59J | 320 | D | X C | 6 | 53 | ~ | (Nearly) Model-independent Constraints on the Neutral Hydrogen Fraction in the Intergalactic Medium at z ∼ 5-7 Using Dark Pixel Fractions in Lyα and Lyβ Forests. | JIN X., YANG J., FAN X., et al. |
© Université de Strasbourg/CNRS
• Contact