PTF 15af , the SIMBAD biblio

PTF 15af , the SIMBAD biblio (43 results) C.D.S. - SIMBAD4 rel 1.8 - 2023.09.22CEST20:48:33

Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2016ApJ...818L..21F 106       D     X         3 15 149 Tidal disruption events prefer unusual host galaxies. FRENCH K.D., ARCAVI I. and ZABLUDOFF A.
2017ApJ...835..176F 225       D     X C       5 9 29 The post-starburst evolution of tidal disruption event host galaxies. FRENCH K.D., ARCAVI I. and ZABLUDOFF A.
2017ApJ...846..150Y 577     A D     X         15 8 8 The carbon and nitrogen abundance ratio in the broad line region of tidal disruption events. YANG C., WANG T., FERLAND G.J., et al.
2017ApJ...850...22L 102       D       C       2 23 72 Tidal disruption event host galaxies in the context of the local galaxy population. LAW-SMITH J., RAMIREZ-RUIZ E., ELLISON S.L., et al.
2017ApJ...850...63J 42           X         1 7 12 Mid-infrared flare of TDE candidate PS16dtm: dust echo and implications for the spectral evolution. JIANG N., WANG T., YAN L., et al.
2017MNRAS.471.1694W 311       D     X C       7 16 108 Black hole masses of tidal disruption event host galaxies. WEVERS T., VAN VELZEN S., JONKER P.G., et al.
2018ApJ...852...72V viz 147       D     X         4 18 106 On the mass and luminosity functions of tidal disruption flares: rate suppression due to black hole event horizons. VAN VELZEN S.
2018ApJ...853...39G 142       D     X         4 41 25 A dependence of the tidal disruption event rate on global stellar surface mass density and stellar velocity dispersion. GRAUR O., FRENCH K.D., ZAHID H.J., et al.
2018MNRAS.480.5060S 86             C       1 14 40 The delay time distribution of tidal disruption flares. STONE N.C., GENEROZOV A., VASILIEV E., et al.
2019ApJ...873...92B viz 2458 T K A     X C       56 10 67 The broad absorption line tidal disruption event
iPTF15af: optical and ultraviolet evolution.
2019ApJ...878...82V 106       D     X         3 19 82 Late-time UV observations of tidal disruption flares reveal unobscured, compact accretion disks. VAN VELZEN S., STONE N.C., METZGER B.D., et al.
2019MNRAS.487.4136W 18       D               1 39 71 Black hole masses of tidal disruption event host galaxies II. WEVERS T., STONE N.C., VAN VELZEN S., et al.
2019ApJ...879..119H 301           X         7 12 40 Discovery of highly blueshifted broad Balmer and metastable helium absorption lines in a tidal disruption event. HUNG T., CENKO S.B., ROTH N., et al.
2019MNRAS.488.1878N 44           X         1 40 44 The tidal disruption event AT2017eqx: spectroscopic evolution from hydrogen rich to poor suggests an atmosphere and outflow. NICHOLL M., BLANCHARD P.K., BERGER E., et al.
2019ApJ...882L..25L 43           X         1 4 ~ The tidal disruption of Sun-like stars by massive black holes. LAW-SMITH J., GUILLOCHON J. and RAMIREZ-RUIZ E.
2019ApJ...883...31F 44           X         1 38 69 A new class of changing-look LINERs. FREDERICK S., GEZARI S., GRAHAM M.J., et al.
2019MNRAS.489.1463O 43           X         1 21 ~ Optical follow-up of the tidal disruption event iPTF16fnl: new insights from X-shooter observations. ONORI F., CANNIZZARO G., JONKER P.G., et al.
2019ApJ...887..218L 309           X C       6 7 82 The spectral evolution of AT 2018dyb and the presence of metal lines in tidal disruption events. LELOUDAS G., DAI L., ARCAVI I., et al.
2020ApJ...891...93F 1045     A D     X C       24 9 ~ The structure of tidal disruption event host galaxies on scales of tens to thousands of parsecs. FRENCH K.D., ARCAVI I., ZABLUDOFF A.I., et al.
2020ApJ...894L..10H 104       D       C       2 36 ~ Examining a peak-luminosity/decline-rate relationship for tidal disruption events. HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al.
2020MNRAS.494.2538N 175           X   F     3 23 37 To TDE or not to TDE: the luminous transient ASASSN-18jd with TDE-like and AGN-like qualities. NEUSTADT J.M.M., HOLOIEN T.W.-S., KOCHANEK C.S., et al.
2020MNRAS.494.4914P 740           X C F     15 6 ~ Accretion disc winds in tidal disruption events: ultraviolet spectral lines as orientation indicators. PARKINSON E.J., KNIGGE C., LONG K.S., et al.
2020MNRAS.498.4119S 47           X         1 9 35 The tidal disruption event AT 2018hyz - I. Double-peaked emission lines and a flat Balmer decrement. SHORT P., NICHOLL M., LAWRENCE A., et al.
2020MNRAS.499..482N 134           X   F     2 14 55 An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. NICHOLL M., WEVERS T., OATES S.R., et al.
2020ApJ...904...73R 149       D     X         4 24 40 Measuring stellar and black hole masses of tidal disruption events. RYU T., KROLIK J. and PIRAN T.
2020ApJ...905L...5U 17       D               1 22 ~ Application of the wind-driven model to a sample of tidal disruption events. UNO K. and MAEDA K.
2021ApJ...907...77Z 287       D     X         7 20 18 Measuring black hole masses from tidal disruption events and testing the MBH* relation. ZHOU Z.Q., LIU F.K., KOMOSSA S., et al.
2021ApJ...908....4V 23       D               1 35 195 Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. VAN VELZEN S., GEZARI S., HAMMERSTEIN E., et al.
2021ApJ...910...83H viz 108       D     X         3 38 17 A Swift fix for nuclear outbursts. HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al.
2021ApJ...911...31J 19       D               3 26 32 Infrared echoes of optical tidal disruption events: ∼1% dust-covering factor or less at subparsec scale. JIANG N., WANG T., HU X., et al.
2021MNRAS.504..792C 180           X         4 17 29 Accretion disc cooling and narrow absorption lines in the tidal disruption event AT 2019dsg. CANNIZZARO G., WEVERS T., JONKER P.G., et al.
2021ApJ...917....9H 46           X         1 15 18 Discovery of a fast iron low-ionization outflow in the early evolution of the nearby tidal disruption event AT 2019qiz. HUNG T., FOLEY R.J., VEILLEUX S., et al.
2022ApJ...924...70M 1094       D     X C       23 6 14 Evidence for the preferential disruption of moderately massive stars by supermassive black holes. MOCKLER B., TWUM A.A., AUCHETTL K., et al.
2022MNRAS.510.5426P 188             C F     5 7 9 Optical line spectra of tidal disruption events from reprocessing in optically thick outflows. PARKINSON E.J., KNIGGE C., MATTHEWS J.H., et al.
2022A&A...659A..34C 113       D         F     9 18 24 A detailed spectroscopic study of tidal disruption events. CHARALAMPOPOULOS P., LELOUDAS G., MALESANI D.B., et al.
2022MNRAS.513.2422L 93               F     1 32 9 The prospects of finding tidal disruption events with 2.5-m Wide-Field Survey Telescope based on mock observations. LIN Z., JIANG N. and KONG X.
2022ApJ...933..196H 47           X         1 32 13 Investigating the Nature of the Luminous Ambiguous Nuclear Transient ASASSN-17jz. HOLOIEN T.W.-S., NEUSTADT J.M.M., VALLELY P.J., et al.
2022MNRAS.515.1146R 47           X         1 33 10 The bulge masses of TDE host galaxies and their scaling with black hole mass. RAMSDEN P., LANNING D., NICHOLL M., et al.
2022MNRAS.515.5604N 47           X         1 38 23 Systematic light-curve modelling of TDEs: statistical differences between the spectroscopic classes. NICHOLL M., LANNING D., RAMSDEN P., et al.
2022ApJ...937L..28T 19       D               1 23 15 Dynamical Unification of Tidal Disruption Events. THOMSEN L.L., KWAN T.M., DAI L., et al.
2023MNRAS.518.5693M 50           X         1 11 1 Probing the tidal disruption event iPTF16axa with CLOUDY and disc-wind models. MAGESHWARAN T., SHAW G. and BHATTACHARYYA S.
2023ApJ...951..134P 250           X C       4 15 5 Chandra, HST/STIS, NICER, Swift, and TESS Detail the Flare Evolution of the Repeating Nuclear Transient ASASSN -14ko. PAYNE A.V., AUCHETTL K., SHAPPEE B.J., et al.
2023ApJ...953L..23M 50           X         1 6 ~ Evidence of a Massive Stellar Disruption in the X-Ray Spectrum of ASASSN-14li. MILLER J.M., MOCKLER B., RAMIREZ-RUIZ E., et al.

goto View the references in ADS


© Université de Strasbourg/CNRS

    • Contact