PS1-14bj , the SIMBAD biblio

PS1-14bj , the SIMBAD biblio (45 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST11:34:51


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2016ApJ...828L..18N 49           X         1 9 85 Superluminous supernova SN 2015bn in the nebular phase: evidence for the engine-powered explosion of a stripped massive star. NICHOLL M., BERGER E., MARGUTTI R., et al.
2016ApJ...831...79I 44           X         1 11 49 Spectropolarimetry of superluminous supernovae: insight into their geometry. INSERRA C., BULLA M., SIM S.A., et al.
2016ApJ...831..144L 4017 T K A D S   X C       98 14 54
PS1-14bj: a hydrogen-poor superluminous supernova with a long rise and slow decay.
LUNNAN R., CHORNOCK R., BERGER E., et al.
2017ApJ...835...13J 85           X         2 22 99 Long-duration superluminous supernovae at late times. JERKSTRAND A., SMARTT S.J., INSERRA C., et al.
2017MNRAS.466.1428G 247           X         6 11 38 The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh. GODOY-RIVERA D., STANEK K.Z., KOCHANEK C.S., et al.
2017ApJ...840...12Y 17       D               3 38 51 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...842...26L 341       D     X C       8 26 23 A Monte Carlo approach to magnetar-powered transients. I. Hydrogen-deficient superluminous supernovae. LIU L.-D., WANG S.-Q., WANG L.-J., et al.
2017MNRAS.468.4642I 448           X   F     10 35 37 Complexity in the light curves and spectra of slow-evolving superluminous supernovae. INSERRA C., NICHOLL M., CHEN T.-W., et al.
2017ApJ...848....6Y 44           X         1 23 91 Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. YAN L., LUNNAN R., PERLEY D.A., et al.
2017ApJ...850...55N 223       D     X         6 41 176 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2017ApJ...851...54W 41           X         1 21 10 A Monte Carlo approach to magnetar-powered transients. II. Broad-lined Type Ic supernovae not associated with GRBs. WANG L.J., CANO Z., WANG S.Q., et al.
2017ApJ...851...95S 17       D               1 24 24 Magnetar-powered superluminous supernovae must first be exploded by jets. SOKER N. and GILKIS A.
2018ApJ...852...81L viz 677       D     X C       16 32 93 Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. LUNNAN R., CHORNOCK R., BERGER E., et al.
2018ApJ...853...57B 43           X         1 27 66 Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a "normal," massive, metal-rich spiral galaxy. BOSE S., DONG S., PASTORELLO A., et al.
2018MNRAS.474..573O 42           X         1 9 16 Radio emission from embryonic superluminous supernova remnants. OMAND C.M.B., KASHIYAMA K. and MURASE K.
2018ApJ...854..175I 346       D     X C       8 48 19 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018A&A...611A..45R 123           X         3 47 13 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018ApJ...860..100D viz 43           X         1 41 119 Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. DE CIA A., GAL-YAM A., RUBIN A., et al.
2018ApJ...864...45M viz 429       D S   X C       9 37 58 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018ApJ...866L..24N 42           X         1 11 12 One thousand days of SN2015bn: HST imaging shows a light curve flattening consistent with magnetar predictions. NICHOLL M., BLANCHARD P.K., BERGER E., et al.
2018ApJ...867..113M 16       D               2 37 11 Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2018ApJ...869..166V 16       D               1 58 6 Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2019ApJ...871..102N 44           X         1 20 55 Nebular-phase spectra of superluminous supernovae: physical insights from observational and statistical properties. NICHOLL M., BERGER E., BLANCHARD P.K., et al.
2019A&A...621A.141D 44           X         1 16 33 Simulations of light curves and spectra for superluminous Type Ic supernovae powered by magnetars. DESSART L.
2019MNRAS.484.3451M 42           X         1 7 2 The nature of PISN candidates: clues from nebular spectra. MAZZALI P.A., MORIYA T.J., TANAKA M., et al.
2019ApJ...874...68C 17       D               1 32 1 A systematic study of superluminous supernova light-curve models using clustering. CHATZOPOULOS E. and TUMINELLO R.
2019ApJ...881...87G viz 126           X C       2 20 27 SN 2016iet: the pulsational or pair instability explosion of a low-metallicity massive CO core embedded in a dense hydrogen-poor circumstellar medium. GOMEZ S., BERGER E., NICHOLL M., et al.
2020ApJ...892...28K 85           X         2 20 ~ SN 2010kd: photometric and spectroscopic analysis of a slow-decaying superluminous supernova. KUMAR A., PANDEY S.B., KONYVES-TOTH R., et al.
2020ApJ...897..114B 17       D               1 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020ApJ...901...61L viz 171           X         4 27 32 Four (super)luminous supernovae from the first months of the ZTF survey. LUNNAN R., YAN L., PERLEY D.A., et al.
2020ApJ...904...74G 17       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2021ApJ...909...24K 17       D               2 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021MNRAS.502.1678K 44           X         1 51 12 SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021ApJ...912...21E 87             C       1 125 18 Late-time radio and millimeter observations of superluminous supernovae and long gamma-ray bursts: implications for central engines, fast radio bursts, and obscured star formation. EFTEKHARI T., MARGALIT B., OMAND C.M.B., et al.
2021ApJ...921...64B 2028     A     X C       46 8 ~ Late-time Hubble Space Telescope observations of a hydrogen-poor superluminous supernova reveal the power-law decline of a magnetar central engine. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2022MNRAS.514.2627C 63       D     X         2 63 5 A puzzle solved after two decades: SN 2002gh among the brightest of superluminous supernovae. CARTIER R., HAMUY M., CONTRERAS C., et al.
2022MNRAS.517.2056G 90           X         2 30 9 SN 2020wnt: a slow-evolving carbon-rich superluminous supernova with no O II lines and a bumpy light curve. GUTIERREZ C.P., PASTORELLO A., BERSTEN M., et al.
2022ApJ...940...69K 18       D               1 32 2 Premaximum Spectroscopic Diversity of Hydrogen-poor Superluminous Supernovae. KONYVES-TOTH R.
2022ApJ...941..107G 45           X         1 238 16 Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. GOMEZ S., BERGER E., NICHOLL M., et al.
2023ApJ...951...34T 140           X C       2 19 3 Supernova 2020wnt: An Atypical Superluminous Supernova with a Hidden Central Engine. TINYANONT S., WOOSLEY S.E., TAGGART K., et al.
2023ApJ...954...44K 65       D     X         2 29 ~ Type W and Type 15bn Subgroups of Hydrogen-poor Superluminous Supernovae: Premaximum Diversity, Postmaximum Homogeneity? KONYVES-TOTH R. and SELI B.
2023MNRAS.526.1822K 112       D         F     2 31 ~ Reduction of supernova light curves by vector Gaussian processes. KORNILOV M.V., SEMENIKHIN T.A. and PRUZHINSKAYA M.V.
2024ApJ...961..146U 50           X         1 8 ~ Metal-enriched Pair-instability Supernovae: Effects of Rotation. UMEDA H. and NAGELE C.
2024ApJ...961..169H 120       D       C       3 110 ~ An Extensive Hubble Space Telescope Study of the Offset and Host Light Distributions of Type I Superluminous Supernovae. HSU B., BLANCHARD P.K., BERGER E., et al.
2024A&A...683A.223S viz 1320       D     X C F     25 28 ~ 1100 days in the life of the supernova 2018ibb The best pair-instability supernova candidate, to date. SCHULZE S., FRANSSON C., KOZYREVA A., et al.

goto View the references in ADS