other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
PS1-11af , the SIMBAD biblio (62 results) | C.D.S. - SIMBAD4 rel 1.8 - 2023.10.03CEST07:04:36 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2014ApJ...780...44C | 7059 | T A | S X C | 175 | 17 | 183 |
The ultraviolet-bright, slowly declining transient PS1-11af as a partial tidal disruption event. |
CHORNOCK R., BERGER E., GEZARI S., et al. | |
2014ApJ...792...53V | 779 | D | X C | 19 | 6 | 108 | Measurement of the rate of stellar tidal disruption flares. | VAN VELZEN S. and FARRAR G.R. | |
2014ApJ...793...38A ![]() |
90 | X | 2 | 15 | 344 | A continuum of H- to He-rich tidal disruption candidates with a preference for E+A galaxies. | ARCAVI I., GAL-YAM A., SULLIVAN M., et al. | ||
2014ApJ...795..142G ![]() |
16 | D | 1 | 448 | 7 | Defining photometric peculiar type Ia supernovae. | GONZALEZ-GAITAN S., HSIAO E.Y., PIGNATA G., et al. | ||
2014MNRAS.445.3263H | 83 | X | 2 | 26 | 217 | ASASSN-14ae: a tidal disruption event at 200 Mpc. | HOLOIEN T.W.-S., PRIETO J.L., BERSIER D., et al. | ||
2015ApJ...798...12V | 123 | X C | 2 | 19 | 63 | A luminous, fast rising UV-transient discovered by ROTSE: a tidal disruption event? | VINKO J., YUAN F., QUIMBY R.M., et al. | ||
2015ApJ...805...83M | 331 | X C | 7 | 3 | 32 | Disk winds as an explanation for slowly evolving temperatures in tidal disruption events. | MILLER M.C. | ||
2015ApJ...806..164P | 87 | D | X | 2 | 7 | 222 | 'Disk formation versus disk accretion–What powers tidal disruption events? | PIRAN T., SVIRSKI G., KROLIK J., et al. | |
2015MNRAS.454.2321S | 83 | X | 2 | 6 | 22 | Insights into tidal disruption of stars from PS1-10jh. | STRUBBE L.E. and MURRAY N. | ||
2015MNRAS.453.3213S | 62 | X | 1 | 5 | 113 | Powerful radiative jets in supercritical accretion discs around non-spinning black holes. | SADOWSKI A. and NARAYAN R. | ||
2016Sci...351...62V | 47 | X | 1 | 24 | 146 | A radio jet from the optical and X-ray bright stellar tidal disruption flare ASASSN-14li. | VAN VELZEN S., ANDERSON G.E., STONE N.C., et al. | ||
2016Sci...351..257D | 95 | X | 2 | 12 | 172 | ASASSN-15lh: A highly super-luminous supernova. | DONG S., SHAPPEE B.J., PRIETO J.L., et al. | ||
2016MNRAS.455..603B | 163 | X | 4 | 3 | 4 | Gaia transient detection efficiency: hunting for nuclear transients. | BLAGORODNOVA N., VAN VELZEN S., HARRISON D.L., et al. | ||
2016MNRAS.455..859S | 285 | X C F | 5 | 165 | 261 | Rates of stellar tidal disruption as probes of the supermassive black hole mass function. | STONE N.C. and METZGER B.D. | ||
2016MNRAS.455.2918H ![]() |
56 | X | 1 | 17 | 270 | Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN. | HOLOIEN T.W.-S., KOCHANEK C.S., PRIETO J.L., et al. | ||
2016ApJ...818L..21F | 50 | X | 1 | 15 | 149 | Tidal disruption events prefer unusual host galaxies. | FRENCH K.D., ARCAVI I. and ZABLUDOFF A. | ||
2016ApJ...819L..25A | 60 | X | 1 | 8 | 153 | Discovery of an outflow from radio observations of the tidal disruption event ASASSN-14li. | ALEXANDER K.D., BERGER E., GUILLOCHON J., et al. | ||
2016MNRAS.458..127K | 42 | X | 1 | 11 | 19 | Abundance anomalies in tidal disruption events. | KOCHANEK C.S. | ||
2016MNRAS.461..371K | 92 | C | 1 | 9 | 101 | Tidal disruption event demographics. | KOCHANEK C.S. | ||
2016MNRAS.462.3993B | 83 | X | 2 | 9 | 19 | Hello darkness my old friend: the fading of the nearby TDE ASASSN-14ae. | BROWN J.S., SHAPPEE B.J., HOLOIEN T.W.-S., et al. | ||
2016ApJ...833..110I | 83 | C | 1 | 13 | 29 | Are ultra-long gamma-ray bursts caused by blue supergiant collapsars, newborn magnetars, or white dwarf tidal disruption events? | IOKA K., HOTOKEZAKA K. and PIRAN T. | ||
2017ApJ...838..149A | 553 | D | X | 14 | 99 | 187 | New physical insights about tidal disruption events from a comprehensive observational inventory At X-ray wavelengths. | AUCHETTL K., GUILLOCHON J. and RAMIREZ-RUIZ E. | |
2017ApJ...842...29H | 173 | X | 4 | 16 | 129 | Revisiting optical tidal disruption events with iPTF16axa. | HUNG T., GEZARI S., BLAGORODNOVA N., et al. | ||
2017ApJ...843..106B | 251 | X C | 5 | 25 | 122 | PS16dtm: a tidal disruption event in a narrow-line Seyfert 1 galaxy. | BLANCHARD P.K., NICHOLL M., BERGER E., et al. | ||
2017ApJ...844...46B ![]() |
175 | X C | 3 | 12 | 124 | IPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy. | BLAGORODNOVA N., GEZARI S., HUNG T., et al. | ||
2017ApJ...844...75M | 123 | X C | 2 | 15 | 13 | Periodic accretion-powered flares from colliding EMRIs as TDE imposters. | METZGER B.D. and STONE N.C. | ||
2017ApJ...846..150Y | 42 | X | 1 | 8 | 8 | The carbon and nitrogen abundance ratio in the broad line region of tidal disruption events. | YANG C., WANG T., FERLAND G.J., et al. | ||
2017MNRAS.471.1694W | 47 | X | 1 | 16 | 108 | Black hole masses of tidal disruption event host galaxies. | WEVERS T., VAN VELZEN S., JONKER P.G., et al. | ||
2018ApJ...852...72V ![]() |
105 | D | X | 3 | 18 | 106 | On the mass and luminosity functions of tidal disruption flares: rate suppression due to black hole event horizons. | VAN VELZEN S. | |
2018ApJ...853...39G | 100 | D | C | 2 | 41 | 25 | A dependence of the tidal disruption event rate on global stellar surface mass density and stellar velocity dispersion. | GRAUR O., FRENCH K.D., ZAHID H.J., et al. | |
2018ApJ...855...54R | 48 | X | 1 | 9 | 61 | What sets the line profiles in tidal disruption events? | ROTH N. and KASEN D. | ||
2018MNRAS.474.3307S | 100 | D | X | 3 | 17 | 13 | Spectral features of tidal disruption candidates and alternative origins for such transient flares. | SAXTON C.J., PERETS H.B. and BASKIN A. | |
2018ApJ...857..109G | 85 | F | 1 | 10 | 12 | Tidal disruptions of main-sequence stars of varying mass and age: inferences from the composition of the fallback material. | GALLEGOS-GARCIA M., LAW-SMITH J. and RAMIREZ-RUIZ E. | ||
2018ApJ...865..128L | 125 | X C | 2 | 19 | 7 | On the missing energy puzzle of tidal disruption events. | LU W. and KUMAR P. | ||
2018ApJS..238...15H | 59 | D | X | 2 | 33 | 15 | Sifting for sapphires: systematic selection of tidal disruption events in iPTF. | HUNG T., GEZARI S., CENKO S.B., et al. | |
2018MNRAS.480.5060S | 86 | C | 1 | 14 | 40 | The delay time distribution of tidal disruption flares. | STONE N.C., GENEROZOV A., VASILIEV E., et al. | ||
2019ApJ...872..151M | 195 | D | X | 5 | 17 | 149 | Weighing black holes using tidal disruption events. | MOCKLER B., GUILLOCHON J. and RAMIREZ-RUIZ E. | |
2019ApJ...872..198V ![]() |
133 | X C | 2 | 13 | 73 | The first tidal disruption flare in ZTF: from photometric selection to multi-wavelength characterization. | VAN VELZEN S., GEZARI S., CENKO S.B., et al. | ||
2019ApJ...873...92B ![]() |
261 | X C | 5 | 10 | 67 | The broad absorption line tidal disruption event iPTF15af: optical and ultraviolet evolution. | BLAGORODNOVA N., CENKO S.B., KULKARNI S.R., et al. | ||
2019ApJ...878...82V | 47 | X | 1 | 19 | 82 | Late-time UV observations of tidal disruption flares reveal unobscured, compact accretion disks. | VAN VELZEN S., STONE N.C., METZGER B.D., et al. | ||
2019MNRAS.487.4057K | 43 | X | 1 | 15 | ~ | PS1-13cbe: the rapid transition of a Seyfert 2 to a Seyfert 1. | KATEBI R., CHORNOCK R., BERGER E., et al. | ||
2019MNRAS.487.4136W | 188 | D | X F | 4 | 39 | 71 | Black hole masses of tidal disruption event host galaxies II. | WEVERS T., STONE N.C., VAN VELZEN S., et al. | |
2019ApJ...879..119H | 131 | X | 3 | 12 | 40 | Discovery of highly blueshifted broad Balmer and metastable helium absorption lines in a tidal disruption event. | HUNG T., CENKO S.B., ROTH N., et al. | ||
2020ApJ...894L..10H | 104 | D | C | 3 | 36 | ~ | Examining a peak-luminosity/decline-rate relationship for tidal disruption events. | HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al. | |
2020MNRAS.497.1925G | 46 | X | 1 | 12 | 26 | The Tidal Disruption Event AT 2018hyz II: Light-curve modelling of a partially disrupted star. | GOMEZ S., NICHOLL M., SHORT P., et al. | ||
2020ApJ...904...73R | 62 | D | X | 2 | 24 | 40 | Measuring stellar and black hole masses of tidal disruption events. | RYU T., KROLIK J. and PIRAN T. | |
2020ApJ...905L...5U | 104 | D | X | 3 | 22 | ~ | Application of the wind-driven model to a sample of tidal disruption events. | UNO K. and MAEDA K. | |
2020ApJ...905...94V ![]() |
64 | D | X | 2 | 15 | 53 | SuperRAENN: a semisupervised supernova Photometric classification pipeline trained on Pan-STARRS1 Medium-Deep Survey supernovae. | VILLAR V.A., HOSSEINZADEH G., BERGER E., et al. | |
2021ApJ...906..101M | 109 | D | C | 3 | 14 | 15 | An energy inventory of tidal disruption events. | MOCKLER B. and RAMIREZ-RUIZ E. | |
2021ApJ...907...77Z | 18 | D | 2 | 20 | 18 | Measuring black hole masses from tidal disruption events and testing the MBH-σ* relation. | ZHOU Z.Q., LIU F.K., KOMOSSA S., et al. | ||
2021ApJ...908....4V | 23 | D | 1 | 35 | 195 | Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. | VAN VELZEN S., GEZARI S., HAMMERSTEIN E., et al. | ||
2021MNRAS.502.3385M | 44 | ~ | Limits on mass outflow from optical tidal disruption events. | MATSUMOTO T. and PIRAN T. | |||||
2021ApJ...911...31J | 19 | D | 3 | 26 | 32 | Infrared echoes of optical tidal disruption events: ∼1% dust-covering factor or less at subparsec scale. | JIANG N., WANG T., HU X., et al. | ||
2021ApJ...917....9H | 46 | X | 1 | 15 | 18 | Discovery of a fast iron low-ionization outflow in the early evolution of the nearby tidal disruption event AT 2019qiz. | HUNG T., FOLEY R.J., VEILLEUX S., et al. | ||
2022ApJ...927L..19W | 47 | X | 1 | 11 | 6 | Revisiting the Rates and Demographics of Tidal Disruption Events: Effects of the Disk Formation Efficiency. | WONG T.H.T., PFISTER H. and DAI L. | ||
2022MNRAS.513.2422L | 93 | F | 1 | 32 | 9 | The prospects of finding tidal disruption events with 2.5-m Wide-Field Survey Telescope based on mock observations. | LIN Z., JIANG N. and KONG X. | ||
2022ApJ...930...12H | 93 | X | 2 | 28 | 23 | The Curious Case of ASASSN-20hx: A Slowly Evolving, UV- and X-Ray-Luminous, Ambiguous Nuclear Transient. | HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al. | ||
2022MNRAS.515.1146R | 112 | D | F | 3 | 33 | 10 | The bulge masses of TDE host galaxies and their scaling with black hole mass. | RAMSDEN P., LANNING D., NICHOLL M., et al. | |
2022MNRAS.515.5604N | 112 | D | F | 2 | 38 | 23 | Systematic light-curve modelling of TDEs: statistical differences between the spectroscopic classes. | NICHOLL M., LANNING D., RAMSDEN P., et al. | |
2022MNRAS.516L..66Z | 47 | X | 1 | 16 | ~ | A new candidate for central tidal disruption event in SDSS J014124 + 010306 with broad Mg II line at z = 1.06. | ZHANG X.-G. | ||
2022MNRAS.517L..71Z | 47 | X | 1 | 10 | 1 | Modelling the flare in NGC 1097 from 1991 to 2004 as a tidal disruption event. | ZHANG X.-G. | ||
2023MNRAS.518.5862M | 50 | X | 1 | 9 | ~ | Advective accretion disc-corona model with fallback for tidal disruption events. | MAGESHWARAN T. and BHATTACHARYYA S. |
© Université de Strasbourg/CNRS
• Contact