other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
LEDA 43234 , the SIMBAD biblio (243 results) | C.D.S. - SIMBAD4 rel 1.8 - 2023.09.22CEST11:39:07 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
1975AJ.....80..545Z | 507 | 16 | Eighth list of compact galaxies. | ZWICKY F., SARGENT W.L.W. and KOWAL C.T. | |||||
1999A&AS..140...89P ![]() |
14 | D | 1 | 16700 | 9 | Galaxy coordinates. II. Accurate equatorial coordinates for 17298 galaxies. | PATUREL G., PETIT C., PRUGNIEL P., et al. | ||
2003A&A...412...45P ![]() |
15 | D | 1 | 956205 | 750 | HYPERLEDA. I. Identification and designation of galaxies. | PATUREL G., PETIT C., PRUGNIEL P., et al. | ||
2010MNRAS.404.1745M ![]() |
15 | D | 1 | 314 | 42 | Star formation, starbursts and quenching across the Coma supercluster. | MAHAJAN S., HAINES C.P. and RAYCHAUDHURY S. | ||
2015ApJ...812...89M ![]() |
16 | D | 1 | 12670 | 7 | ECO and RESOLVE: galaxy disk growth in environmental context. | MOFFETT A.J., KANNAPPAN S.J., BERLIND A.A., et al. | ||
2015ApJ...815L...5G | 55 | X | 1 | 2 | 30 | PS1-10jh continues to follow the fallback accretion rate of a tidally disrupted star. | GEZARI S., CHORNOCK R., LAWRENCE A., et al. | ||
2016ApJ...816...20L | 42 | X | 1 | 7 | 13 | IGR J12580+0134: the first tidal disruption event with an off-beam relativistic jet. | LEI W.-H., YUAN Q., ZHANG B., et al. | ||
2015Natur.526..542M | 1611 | A | X | 40 | 6 | 132 | Flows of X-ray gas reveal the disruption of a star by a massive black hole. | MILLER J.M., KAASTRA J.S., MILLER M.C., et al. | |
2016Sci...351...62V | 1168 | A | X | 29 | 24 | 146 |
A radio jet from the optical and X-ray bright stellar tidal disruption flare ASASSN-14li. |
VAN VELZEN S., ANDERSON G.E., STONE N.C., et al. | |
2016MNRAS.455.2918H ![]() |
3467 | T A | D | X C F | 83 | 17 | 270 |
Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN. |
HOLOIEN T.W.-S., KOCHANEK C.S., PRIETO J.L., et al. |
2016ApJ...818L..21F | 106 | D | X | 3 | 15 | 149 | Tidal disruption events prefer unusual host galaxies. | FRENCH K.D., ARCAVI I. and ZABLUDOFF A. | |
2016ApJ...818L..32C | 1419 | T A | S X C | 32 | 4 | 57 |
An ultraviolet spectrum of the tidal disruption flare ASASSN-14li. |
CENKO S.B., CUCCHIARA A., ROTH N., et al. | |
2016ApJ...819...51L | 42 | X | 1 | 18 | 25 | Late time multi-wavelength observations of Swift J1644+5734: a luminous Optical/IR bump and quiescent X-ray emission. | LEVAN A.J., TANVIR N.R., BROWN G.C., et al. | ||
2016ApJ...819L..25A | 1603 | T A | D | X C | 38 | 8 | 153 |
Discovery of an outflow from radio observations of the tidal disruption event ASASSN-14li. |
ALEXANDER K.D., BERGER E., GUILLOCHON J., et al. |
2014ATel.6777....1J | 400 | T | X | 9 | 2 | 13 |
ASAS-SN Discovery of an Unusual Nuclear Transient in PGC 043234. |
JOSE J., GUO Z., LONG F., et al. | |
2014ATel.6800....1M | 159 | T | X | 3 | 1 | 1 | Chandra LETG Spectroscopy of the Tidal Disruption Candidate ASASSN -14li. | MILLER J.M., CENKO B., GEZARI S., et al. | |
2014ATel.6825....1M | 199 | T | X | 4 | 1 | ~ |
X-ray Absorption Lines in the Candidate Tidal Disruption Event ASASSN-14li. |
MILLER J.M., DRAKE J.J., KAASTRA J., et al. | |
2014ATel.6834....1M | 238 | T | X | 5 | 3 | ~ |
X-ray Astrometric Confirmation of Association of the Candidate Tidal Disruption Event ASASSN-14li with its Host Nucleus. |
MAKSYM W.P., MILLER J.M., CENKO S.B., et al. | |
2016MNRAS.458..127K | 350 | A | X | 9 | 11 | 19 | Abundance anomalies in tidal disruption events. | KOCHANEK C.S. | |
2016MNRAS.458..575L | 72 | A | X | 2 | 6 | 42 | Infrared emission from tidal disruption events - probing the pc-scale dust content around galactic nuclei. | LU W., KUMAR P. and EVANS N.J. | |
2016ApJ...825...47P | 309 | A | S X | 7 | 6 | 5 | Search for high-energy gamma-ray emission from tidal disruption events with the Fermi large area telescope. | PENG F.-K., TANG Q.-W. and WANG X.-Y. | |
2016MNRAS.460..304K | 41 | X | 1 | 10 | 6 | Parsec-scale radio morphology and variability of a changing-look AGN: the case of Mrk 590. | KOAY J.Y., VESTERGAARD M., BIGNALL H.E., et al. | ||
2016ApJ...827....3R | 264 | X | 6 | 7 | 146 | The X-ray through optical fluxes and line strengths of tidal disruption events. | ROTH N., KASEN D., GUILLOCHON J., et al. | ||
2016MNRAS.461..371K | 92 | C | 1 | 9 | 101 | Tidal disruption event demographics. | KOCHANEK C.S. | ||
2016ApJ...827..127K | 946 | T A | D | S X | 22 | 7 | 87 |
ASASSN-14li: a model tidal disruption event. |
KROLIK J., PIRAN T., SVIRSKI G., et al. |
2016ApJ...828L..14J | 1111 | T K A | S X C | 23 | 1 | 71 |
The WISE detection of an infrared echo in tidal disruption event ASASSN-14li. |
JIANG N., DOU L., WANG T., et al. | |
2016ApJ...828....3B ![]() |
82 | C | 1 | 15 | 22 | ASASSN-15lh: a superluminous ultraviolet rebrightening observed by Swift and Hubble. | BROWN P.J., YANG Y., COOKE J., et al. | ||
2016ApJ...829...19V | 47 | X | 1 | 12 | 78 | Discovery of transient infrared emission from dust heated by stellar tidal disruption flares. | VAN VELZEN S., MENDEZ A.J., KROLIK J.H., et al. | ||
2016MNRAS.461.3375Y | 41 | X | 1 | 6 | 5 | Catching jetted tidal disruption events early in millimetre. | YUAN Q., WANG Q.D., LEI W., et al. | ||
2016ApJ...830L..32P | 1977 | T A | X C | 47 | 7 | 26 |
MUSE reveals a recent merger in the post-starburst host galaxy of the TDE ASASSN-14li. |
PRIETO J.L., KRUHLER T., ANDERSON J.P., et al. | |
2015ATel.8309....1H | 161 | T | X | 3 | 1 | ~ |
Swift Observations of the TDE ASASSN-14li Show That It Remains Bright in UV and X-rays. |
HOLOIEN T.W.-S., STANEK K.Z., GRUPE D., et al. | |
2016ApJ...832L..10R | 960 | T K A | X C | 22 | 7 | 15 |
The TDE ASASSN-14li and its host resolved at parsec scales with the EVN. |
ROMERO-CANIZALES C., PRIETO J.L., CHEN X., et al. | |
2016ApJ...832..188D | 245 | X | 6 | 9 | 15 | Long fading mid-infrared emission in transient coronal line emitters: dust echo of a tidal disruption flare. | DOU L., WANG T.-G., JIANG N., et al. | ||
2017ApJ...835..176F | 308 | D | X | 8 | 9 | 29 | The post-starburst evolution of tidal disruption event host galaxies. | FRENCH K.D., ARCAVI I. and ZABLUDOFF A. | |
2016MNRAS.463.3813H ![]() |
1804 | X C F | 42 | 8 | 142 | ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc. | HOLOIEN T.W.-S., KOCHANEK C.S., PRIETO J.L., et al. | ||
2017A&A...597A.134M ![]() |
16 | D | 1 | 2666 | 17 | A large sample of Kohonen selected E+A (post-starburst) galaxies from the Sloan Digital Sky Survey. | MEUSINGER H., BRUNECKE J., SCHALLDACH P., et al. | ||
2017ApJ...836...25M ![]() |
213 | X C | 4 | 9 | 63 | X-rays from the location of the double-humped transient ASASSN-15lh. | MARGUTTI R., METZGER B.D., CHORNOCK R., et al. | ||
2017ApJ...837L..30P | 942 | T A | X C | 21 | 1 | 12 |
Optical/UV-to-X-Ray echoes from the tidal disruption flare ASASSN-14li. |
PASHAM D.R., CENKO S.B., SADOWSKI A., et al. | |
2017ApJ...837..153A | 771 | A | X C | 18 | 10 | 58 | Radio observations of the tidal disruption event XMMSL1 J0740-85. | ALEXANDER K.D., WIERINGA M.H., BERGER E., et al. | |
2017MNRAS.464.2481G | 635 | D | X C F | 14 | 22 | 24 | The influence of circumnuclear environment on the radio emission from TDE jets. | GENEROZOV A., MIMICA P., METZGER B.D., et al. | |
2017A&A...599A..55B | 123 | X | 3 | 11 | 2 | Time lag in transient cosmic accreting sources. | BISNOVATYI-KOGAN G.S. and GIOVANNELLI F. | ||
2017ApJ...838..149A | 3516 | D | X C | 85 | 99 | 187 | New physical insights about tidal disruption events from a comprehensive observational inventory At X-ray wavelengths. | AUCHETTL K., GUILLOCHON J. and RAMIREZ-RUIZ E. | |
2017MNRAS.465L.114W ![]() |
83 | X | 2 | 13 | 22 | OGLE16aaa - a signature of a hungry supermassive black hole. | WYRZYKOWSKI L., ZIELINSKI M., KOSTRZEWA-RUTKOWSKA Z., et al. | ||
2017MNRAS.466.1428G | 85 | X | 2 | 11 | 38 | The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh. | GODOY-RIVERA D., STANEK K.Z., KOCHANEK C.S., et al. | ||
2017ApJ...842...29H | 420 | X | 10 | 16 | 129 | Revisiting optical tidal disruption events with iPTF16axa. | HUNG T., GEZARI S., BLAGORODNOVA N., et al. | ||
2017ApJ...842..126P | 41 | X | 1 | 13 | 6 | Compact resolved ejecta in the nearest tidal disruption event. | PERLMAN E.S., MEYER E.T., WANG Q.D., et al. | ||
2017MNRAS.466.4904B | 2519 | T A | D | X C | 60 | 7 | 60 |
The-long term evolution of ASASSN-14li. |
BROWN J.S., HOLOIEN T.W.-S., AUCHETTL K., et al. |
2017MNRAS.468..783L | 42 | X | 1 | 7 | 11 | Large decay of X-ray flux in 2XMM J123103.2+110648: evidence for a tidal disruption event. | LIN D., GODET O., HO L.C., et al. | ||
2017MNRAS.469..314K | 477 | A | S X C | 10 | 4 | 3 | TDE fallback cut-off due to a pre-existing accretion disc. | KATHIRGAMARAJU A., BARNIOL DURAN R. and GIANNIOS D. | |
2017ApJ...843..106B | 416 | X C | 9 | 25 | 122 | PS16dtm: a tidal disruption event in a narrow-line Seyfert 1 galaxy. | BLANCHARD P.K., NICHOLL M., BERGER E., et al. | ||
2017ApJ...844...46B ![]() |
339 | X C | 7 | 12 | 124 | IPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy. | BLAGORODNOVA N., GEZARI S., HUNG T., et al. | ||
2017ApJ...844...75M | 123 | X C | 2 | 15 | 13 | Periodic accretion-powered flares from colliding EMRIs as TDE imposters. | METZGER B.D. and STONE N.C. | ||
2017ApJ...846..150Y | 865 | A | D | X C | 21 | 8 | 8 | The carbon and nitrogen abundance ratio in the broad line region of tidal disruption events. | YANG C., WANG T., FERLAND G.J., et al. |
2017MNRAS.469.1354D | 101 | D | X | 3 | 12 | 29 | Can tidal disruption events produce the IceCube neutrinos? | DAI L. and FANG K. | |
2017MNRAS.471.1141L | 16 | D | 1 | 8 | 4 | Radiative interaction between the relativistic jet and optically thick envelope in tidal disruption events. | LU W., KROLIK J., CRUMLEY P., et al. | ||
2017ApJ...849...20E ![]() |
16 | D | 2 | 9926 | 2 | The baryonic collapse efficiency of galaxy groups in the RESOLVE and ECO surveys. | ECKERT K.D., KANNAPPAN S.J., LAGOS C.D.P., et al. | ||
2017ApJ...850...22L | 143 | D | X | 4 | 23 | 72 | Tidal disruption event host galaxies in the context of the local galaxy population. | LAW-SMITH J., RAMIREZ-RUIZ E., ELLISON S.L., et al. | |
2017ApJ...850...63J | 83 | X | 2 | 7 | 12 | Mid-infrared flare of TDE candidate PS16dtm: dust echo and implications for the spectral evolution. | JIANG N., WANG T., YAN L., et al. | ||
2017ApJ...851L..47G | 256 | X C | 5 | 9 | 88 | X-ray brightening and UV fading of tidal disruption event ASASSN-15oi. | GEZARI S., CENKO S.B. and ARCAVI I. | ||
2017MNRAS.471.1694W | 269 | D | X | 7 | 16 | 108 | Black hole masses of tidal disruption event host galaxies. | WEVERS T., VAN VELZEN S., JONKER P.G., et al. | |
2017MNRAS.471.3788P | 16 | D | 1 | 25 | 3 | On the use of variability time-scales as an early classifier of radio transients and variables. | PIETKA M., STALEY T.D., PRETORIUS M.L., et al. | ||
2018ApJ...852...37A | 253 | X C | 5 | 26 | 57 | A comparison of the X-ray emission from tidal disruption events with those of active galactic nuclei. | AUCHETTL K., RAMIREZ-RUIZ E. and GUILLOCHON J. | ||
2018ApJ...852...72V ![]() |
105 | D | X | 3 | 18 | 106 | On the mass and luminosity functions of tidal disruption flares: rate suppression due to black hole event horizons. | VAN VELZEN S. | |
2018MNRAS.473.1130B | 1659 | A | X C F | 38 | 8 | 32 | The ultraviolet spectroscopic evolution of the low-luminosity tidal disruption event iPTF16fnl. | BROWN J.S., KOCHANEK C.S., HOLOIEN T.W.-S., et al. | |
2018ApJ...853...39G | 435 | D | X C | 10 | 41 | 25 | A dependence of the tidal disruption event rate on global stellar surface mass density and stellar velocity dispersion. | GRAUR O., FRENCH K.D., ZAHID H.J., et al. | |
2018ApJ...854...86E | 173 | X C | 3 | 8 | 49 | Radio monitoring of the tidal disruption event Swift J164449.3+573451 III. Late-time jet energetics and a deviation from equipartition. | EFTEKHARI T., BERGER E., ZAUDERER B.A., et al. | ||
2018ApJ...855...54R | 424 | X C | 9 | 9 | 61 | What sets the line profiles in tidal disruption events? | ROTH N. and KASEN D. | ||
2018A&A...610A..14K ![]() |
254 | X | 6 | 4 | 12 | The supermassive black hole coincident with the luminous transient ASASSN-15lh. | KRUHLER T., FRASER M., LELOUDAS G., et al. | ||
2018MNRAS.474.3307S | 59 | D | X | 2 | 17 | 13 | Spectral features of tidal disruption candidates and alternative origins for such transient flares. | SAXTON C.J., PERETS H.B. and BASKIN A. | |
2018MNRAS.474.3593K | 454 | T A | X C | 8 | 1 | 53 |
Ultrafast outflow in tidal disruption event ASASSN-14li. |
KARA E., DAI L., REYNOLDS C.S., et al. | |
2018MNRAS.475.1190Y | 42 | X | 1 | 11 | ~ | A decades-long fast-rise-exponential-decay flare in low-luminosity AGN NGC 7213. | YAN Z. and XIE F.-G. | ||
2018ApJ...856....1P | 2094 | T K A | D | S X C | 48 | 3 | 14 |
Discovery of a time lag between the soft X-ray and radio emission of the tidal disruption flare ASASSN-14li: evidence for linear disk-jet coupling. |
PASHAM D.R. and VAN VELZEN S. |
2018MNRAS.475.4011B | 2215 | T K A | D | S X C F | 50 | 11 | 8 |
Long-term radio and X-ray evolution of the tidal disruption event ASASSN-14li. |
BRIGHT J.S., FENDER R.P., MOTTA S.E., et al. |
2018ApJ...857..109G | 43 | X | 1 | 10 | 12 | Tidal disruptions of main-sequence stars of varying mass and age: inferences from the composition of the fallback material. | GALLEGOS-GARCIA M., LAW-SMITH J. and RAMIREZ-RUIZ E. | ||
2018MNRAS.476.5312V | 43 | X | 1 | 5 | 9 | Tidal disruption of stars in a supermassive black hole binary system: the influence of orbital properties on fallback and accretion rates. | VIGNERON Q., LODATO G. and GUIDARELLI A. | ||
2018MNRAS.477.2943W | 125 | X | 3 | 23 | 8 | Long-term decline of the mid-infrared emission of normal galaxies: dust echo of tidal disruption flare? | WANG T., YAN L., DOU L., et al. | ||
2017NatAs...1....2L | 4 | ~ | The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. | LELOUDAS G., FRASER M., STONE N.C., et al. | |||||
2017NatAs...1...33L | 6 | ~ | A likely decade-long sustained tidal disruption event. | LING D., GUILLOCHON J., KOMOSSA S., et al. | |||||
2018Sci...361..482M | 7 | 14 | 107 | A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger. | MATTILA S., PEREZ-TORRES M., EFSTATHIOU A., et al. | ||||
2018MNRAS.478.3016W | 45 | X | 1 | 4 | 14 | Super-Eddington accretion in tidal disruption events: the impact of realistic fallback rates on accretion rates. | WU S., COUGHLIN E.R. and NIXON C. | ||
2018MNRAS.478.4336M ![]() |
17 | D | 1 | 4285 | 3 | Ultraviolet and optical view of galaxies in the Coma supercluster. | MAHAJAN S., SINGH A. and SHOBHANA D. | ||
2018ApJ...865..128L | 485 | A | X C | 11 | 19 | 7 | On the missing energy puzzle of tidal disruption events. | LU W. and KUMAR P. | |
2018ApJS..238...15H | 142 | D | X C | 3 | 33 | 15 | Sifting for sapphires: systematic selection of tidal disruption events in iPTF. | HUNG T., GEZARI S., CENKO S.B., et al. | |
2018MNRAS.480.2929C | 1992 | T A | S X C | 45 | 3 | 7 |
A large accretion disc of extreme eccentricity in the TDE ASASSN-14li. |
CAO R., LIU F.K., ZHOU Z.Q., et al. | |
2018MNRAS.481..307K ![]() |
125 | X C | 2 | 966 | 6 | Gaia transients in galactic nuclei. | KOSTRZEWA-RUTKOWSKA Z., JONKER P.G., HODGKIN S.T., et al. | ||
2018MNRAS.480.5060S | 86 | C | 1 | 14 | 40 | The delay time distribution of tidal disruption flares. | STONE N.C., GENEROZOV A., VASILIEV E., et al. | ||
2018MNRAS.480.5689H | 880 | X C | 20 | 9 | 19 | The unusual late-time evolution of the tidal disruption event ASASSN-15oi. | HOLOIEN T.W.-S., BROWN J.S., AUCHETTL K., et al. | ||
2018MNRAS.481.3348B | 18 | D | 1 | 4 | 7 | The evolution of Kerr discs and late-time tidal disruption event light curves. | BALBUS S.A. and MUMMERY A. | ||
2019MNRAS.483..565C | 48 | X | 1 | 9 | 51 | GRRMHD simulations of tidal disruption event accretion discs around supermassive black holes: jet formation, spectra, and detectability. | CURD B. and NARAYAN R. | ||
2019MNRAS.482.2872Y | 112 | A | X | 3 | 3 | 5 | Shock breakouts from tidal disruption events. | YALINEWICH A., GUILLOCHON J., SARI R., et al. | |
2019MNRAS.483.3566V | 43 | X | 1 | 27 | 3 | Discovery of a transient ultraluminous X-ray source in the elliptical galaxy M86. | VAN HAAFTEN L.M., MACCARONE T.J., RHODE K.L., et al. | ||
2019A&A...622L...2G | 85 | C | 2 | 7 | 4 | Discovery and follow-up of the unusual nuclear transient OGLE17aaj. | GROMADZKI M., HAMANOWICZ A., WYRZYKOWSKI L., et al. | ||
2019ApJ...872..151M | 536 | D | X C | 12 | 17 | 149 | Weighing black holes using tidal disruption events. | MOCKLER B., GUILLOCHON J. and RAMIREZ-RUIZ E. | |
2019ApJ...872..198V ![]() |
260 | X C | 5 | 13 | 73 | The first tidal disruption flare in ZTF: from photometric selection to multi-wavelength characterization. | VAN VELZEN S., GEZARI S., CENKO S.B., et al. | ||
2019ApJ...873...92B ![]() |
304 | X C | 6 | 10 | 67 | The broad absorption line tidal disruption event iPTF15af: optical and ultraviolet evolution. | BLAGORODNOVA N., CENKO S.B., KULKARNI S.R., et al. | ||
2019ApJ...874...44Y | 213 | X C | 4 | 17 | 5 | Rapid "turn-on" of type-1 AGN in a quiescent early-type galaxy SDSS1115+0544. | YAN L., WANG T., JIANG N., et al. | ||
2019Sci...363..531P | 1370 | X | 32 | 5 | 43 | A loud quasi-periodic oscillation after a star is disrupted by a massive black hole. | PASHAM D.R., REMILLARD R.A., FRAGILE P.C., et al. | ||
2019NatAs...3..242T | 89 | C | 2 | 14 | 60 | A new class of flares from accreting supermassive black holes. | TRAKHTENBROT B., ARCAVI I., RICCI C., et al. | ||
2019ApJS..241...17C | 171 | X C | 3 | 11 | 11 | First release of high-redshift superluminous supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). II. Spectroscopic properties. | CURTIN C., COOKE J., MORIYA T.J., et al. | ||
2019MNRAS.486.3388D | 85 | X | 2 | 8 | 1 | Evidence for a TDE origin of the radio transient Cygnus A-2. | DE VRIES M.N., WISE M.W., NULSEN P.E.J., et al. | ||
2019ATel12870....1P | 43 | X | 1 | 4 | ~ | Radio detection of the tidal disruption event AT2019azh. | PEREZ-TORRES M., MOLDON J., MATTILA S., et al. | ||
2019ApJ...878...82V | 617 | D | X | 15 | 19 | 82 | Late-time UV observations of tidal disruption flares reveal unobscured, compact accretion disks. | VAN VELZEN S., STONE N.C., METZGER B.D., et al. | |
2019MNRAS.487.2505K | 47 | X | 1 | 15 | 62 | Swift spectra of AT2018cow: a white dwarf tidal disruption event? | KUIN N.P.M., WU K., OATES S., et al. | ||
2019MNRAS.487.4057K | 341 | X C F | 6 | 15 | ~ | PS1-13cbe: the rapid transition of a Seyfert 2 to a Seyfert 1. | KATEBI R., CHORNOCK R., BERGER E., et al. | ||
2019MNRAS.487.4083Y | 878 | A | S X C F | 18 | 4 | 4 | Radio emission from the unbound debris of tidal disruption events. | YALINEWICH A., STEINBERG E., PIRAN T., et al. | |
2019MNRAS.487.4136W | 401 | D | X F | 9 | 39 | 71 | Black hole masses of tidal disruption event host galaxies II. | WEVERS T., STONE N.C., VAN VELZEN S., et al. | |
2019ApJ...879..119H | 471 | X C | 10 | 12 | 40 | Discovery of highly blueshifted broad Balmer and metastable helium absorption lines in a tidal disruption event. | HUNG T., CENKO S.B., ROTH N., et al. | ||
2019MNRAS.488.1878N | 554 | X C F | 11 | 40 | 44 | The tidal disruption event AT2017eqx: spectroscopic evolution from hydrogen rich to poor suggests an atmosphere and outflow. | NICHOLL M., BLANCHARD P.K., BERGER E., et al. | ||
2019ApJ...880..120H ![]() |
601 | X C | 13 | 14 | 76 | PS18kh: a new tidal disruption event with a non-axisymmetric accretion disk. | HOLOIEN T.W.-S., HUBER M.E., SHAPPEE B.J., et al. | ||
2019MNRAS.488.4816W | 517 | X C | 11 | 15 | 97 | Evidence for rapid disc formation and reprocessing in the X-ray bright tidal disruption event candidate AT 2018fyk. | WEVERS T., PASHAM D.R., VAN VELZEN S., et al. | ||
2019ATel12960....1P | 43 | X | 1 | 6 | ~ | Unambiguous radio detection of the tidal disruption event AT2019dsg with e-MERLIN. | PEREZ-TORRES M., MOLDON J., MATTILA S., et al. | ||
2019ApJ...882L..25L | 43 | X | 1 | 4 | ~ | The tidal disruption of Sun-like stars by massive black holes. | LAW-SMITH J., GUILLOCHON J. and RAMIREZ-RUIZ E. | ||
2019ApJ...883...31F | 129 | X | 3 | 38 | 69 | A new class of changing-look LINERs. | FREDERICK S., GEZARI S., GRAHAM M.J., et al. | ||
2019ApJ...883..111H ![]() |
430 | X C | 9 | 15 | 74 | Discovery and early evolution of ASASSN-19bt, the first TDE detected by TESS. | HOLOIEN T.W.-S., VALLELY P.J., AUCHETTL K., et al. | ||
2019MNRAS.489..143M | 17 | D | 1 | 4 | ~ | Evolution of relativistic thin discs with a finite ISCO stress - II. Late time behaviour. | MUMMERY A. and BALBUS S.A. | ||
2019MNRAS.489.1463O | 255 | X C | 5 | 21 | ~ | Optical follow-up of the tidal disruption event iPTF16fnl: new insights from X-shooter observations. | ONORI F., CANNIZZARO G., JONKER P.G., et al. | ||
2019A&A...630A..98S | 255 | X C | 5 | 24 | ~ | XMMSL2 J144605.0+685735: a slow tidal disruption event. | SAXTON R.D., READ A.M., KOMOSSA S., et al. | ||
2019ApJ...887..218L | 1016 | A | X C | 23 | 7 | 82 | The spectral evolution of AT 2018dyb and the presence of metal lines in tidal disruption events. | LELOUDAS G., DAI L., ARCAVI I., et al. | |
2019ATel13163....1M | 128 | X | 3 | 2 | ~ | Early Chandra X-ray Spectroscopy of the Nuclear Transient AT2019pev. | MILLER J.M., ZOGHBI A., REYNOLDS M., et al. | ||
2020ApJ...889..166J | 46 | X | 1 | 26 | 54 | Implications from late-time X-ray detections of optically selected tidal disruption events: state changes, unification, and detection rates. | JONKER P.G., STONE N.C., GENEROZOV A., et al. | ||
2020ApJ...890...73B | 50 | X | 1 | 6 | 40 | The prospects of observing tidal disruption events with the Large Synoptic Survey Telescope. | BRICMAN K. and GOMBOC A. | ||
2020MNRAS.492..686L | 470 | A | X C F | 9 | 10 | 93 | Self-intersection of the fallback stream in tidal disruption events. | LU W. and BONNEROT C. | |
2020MNRAS.492.5655M | 2872 | A | S X C F | 63 | 2 | 34 | The spectral evolution of disc dominated tidal disruption events. | MUMMERY A. and BALBUS S.A. | |
2020ApJ...891...93F | 1523 | A | D | X C | 35 | 9 | ~ | The structure of tidal disruption event host galaxies on scales of tens to thousands of parsecs. | FRENCH K.D., ARCAVI I., ZABLUDOFF A.I., et al. |
2020ApJ...891..121L | 44 | X | 1 | 12 | ~ | Multiwavelength study of an X-ray tidal disruption event candidate in NGC 5092. | LI D., SAXTON R.D., YUAN W., et al. | ||
2020AJ....159..167L ![]() |
279 | D | X | 7 | 639 | 53 | The AMUSING++ nearby galaxy compilation. I. Full sample characterization and galactic-scale outflow selection. | LOPEZ-COBA C., SANCHEZ S.F., ANDERSON J.P., et al. | |
2020ApJ...892L...1L | 44 | X | 1 | 11 | ~ | Optical polarimetry of the tidal disruption event AT2019DSG. | LEE C.-H., HUNG T., MATHESON T., et al. | ||
2020ApJS..247...53K ![]() |
17 | D | 1 | 23373 | 20 | Radio sources associated with Optical Galaxies and having Unresolved or Extended morphologies (ROGUE). I. A catalog of SDSS galaxies with FIRST core identifications. | KOZIEL-WIERZBOWSKA D., GOYAL A. and ZYWUCKA N. | ||
2020ApJ...894L..10H | 17 | D | 1 | 36 | ~ | Examining a peak-luminosity/decline-rate relationship for tidal disruption events. | HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al. | ||
2020MNRAS.493..477C | 44 | X | 1 | 9 | ~ | Extreme variability in an active galactic nucleus: Gaia16aax. | CANNIZZARO G., FRASER M., JONKER P.G., et al. | ||
2020ApJ...894...93L | 45 | X | 1 | 12 | 18 | A tidal disruption event candidate discovered in the active galactic nucleus SDSS J022700.77-042020.6. | LIU Z., LI D., LIU H.-Y., et al. | ||
2020MNRAS.494.2538N | 915 | X C F | 19 | 23 | 37 | To TDE or not to TDE: the luminous transient ASASSN-18jd with TDE-like and AGN-like qualities. | NEUSTADT J.M.M., HOLOIEN T.W.-S., KOCHANEK C.S., et al. | ||
2020MNRAS.494.4914P | 479 | X C F | 9 | 6 | ~ | Accretion disc winds in tidal disruption events: ultraviolet spectral lines as orientation indicators. | PARKINSON E.J., KNIGGE C., LONG K.S., et al. | ||
2020MNRAS.495.3538J | 44 | X | 1 | 11 | ~ | Reobserving the NLS1 galaxy RE J1034+396 - I. The long-term, recurrent X-ray QPO with a high significance. | JIN C., DONE C. and WARD M. | ||
2020ApJ...896L..27D | 87 | X | 2 | 24 | ~ | Compact radio emission from nearby galaxies with mid-infrared nuclear outbursts. | DAI B.B., SHU X.W., JIANG N., et al. | ||
2020ApJ...897...80W | 2187 | A | D | S X C | 49 | 3 | 34 | Continuum-fitting the X-ray spectra of tidal disruption events. | WEN S., JONKER P.G., STONE N.C., et al. |
2020MNRAS.496.1784M | 44 | X | 1 | 5 | ~ | Relativistic accretion disc in tidal disruption events. | MAGESHWARAN T. and BHATTACHARYYA S. | ||
2020ApJ...898..161H ![]() |
222 | X C | 4 | 11 | 49 | The rise and fall of ASASSN-18pg: following a TDE from early to late times. | HOLOIEN T.W.-S., AUCHETTL K., TUCKER M.A., et al. | ||
2020A&A...639A.100K | 131 | X | 3 | 14 | ~ | Rapid late-time X-ray brightening of the tidal disruption event OGLE16aaa. | KAJAVA J.J.E., GIUSTINI M., SAXTON R.D., et al. | ||
2020MNRAS.497L...1W | 89 | X | 2 | 10 | 26 | Fainter harder brighter softer: a correlation between αox, X-ray spectral state, and Eddington ratio in tidal disruption events. | WEVERS T. | ||
2020MNRAS.497.1925G | 350 | X | 8 | 12 | 26 | The Tidal Disruption Event AT 2018hyz II: Light-curve modelling of a partially disrupted star. | GOMEZ S., NICHOLL M., SHORT P., et al. | ||
2020MNRAS.498.2167K | 610 | X C | 13 | 22 | 29 | AT 2017gbl: a dust obscured TDE candidate in a luminous infrared galaxy. | KOOL E.C., REYNOLDS T.M., MATTILA S., et al. | ||
2020MNRAS.499..482N | 264 | X C F | 4 | 14 | 55 | An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. | NICHOLL M., WEVERS T., OATES S.R., et al. | ||
2020A&A...642A.111C | 44 | X | 1 | 5 | ~ | A study on tidal disruption event dynamics around an Sgr A*-like massive black hole. | CLERICI A. and GOMBOC A. | ||
2020ApJ...903...31H ![]() |
135 | X C | 2 | 9 | 41 | Double-peaked Balmer emission indicating prompt accretion disk formation in an X-ray faint tidal disruption event. | HUNG T., FOLEY R.J., RAMIREZ-RUIZ E., et al. | ||
2020ApJ...903..116A | 549 | A | X C | 12 | 21 | 41 | Caltech-NRAO Stripe 82 Survey (CNSS). III. The first radio-discovered tidal disruption event, CNSS J0019+00. | ANDERSON M.M., MOOLEY K.P., HALLINAN G., et al. | |
2020ApJ...904...73R | 262 | X | 6 | 24 | 40 | Measuring stellar and black hole masses of tidal disruption events. | RYU T., KROLIK J. and PIRAN T. | ||
2020MNRAS.499.5562Z | 218 | X C F | 3 | 13 | ~ | Eccentric tidal disruption event discs around supermassive black holes: dynamics and thermal emission. | ZANAZZI J.J. and OGILVIE G.I. | ||
2020ApJ...904...98R | 157 | X | 3 | 2 | 52 | Tidal disruptions of main-sequence stars. I. Observable quantities and their dependence on stellar and black hole mass. | RYU T., KROLIK J., PIRAN T., et al. | ||
2021MNRAS.500L..57Z | 45 | X | 1 | 5 | ~ | Further evidence to support a tidal disruption event in the changing-look AGN SDSS J0159. | ZHANG X.-G. | ||
2020ApJ...905L...5U | 148 | D | X C | 3 | 22 | ~ | Application of the wind-driven model to a sample of tidal disruption events. | UNO K. and MAEDA K. | |
2021MNRAS.500.1673H | 944 | X C | 20 | 18 | 65 | Discovery and follow-up of ASASSN-19dj: an X-ray and UV luminous TDE in an extreme post-starburst galaxy. | HINKLE J.T., HOLOIEN T.W.-S., AUCHETTL K., et al. | ||
2020A&A...644L...9S | 219 | X C | 4 | 10 | 12 | Possible ∼0.4 h X-ray quasi-periodicity from an ultrasoft active galactic nucleus. | SONG J.R., SHU X.W., SUN L.M., et al. | ||
2021MNRAS.501..916J | 45 | X | 1 | 10 | ~ | The awakening beast in the Seyfert 1 Galaxy KUG 1141+371 - I. | JIANG J., CHENG H., GALLO L.C., et al. | ||
2021ApJ...906...92S | 18 | D | 1 | 21 | 14 | Confrontation of observation and theory: high-frequency QPOs in X-ray binaries, tidal disruption events, and active galactic nuclei. | SMITH K.L., TANDON C.R. and WAGONER R.V. | ||
2021ApJ...906..101M | 377 | D | X C | 8 | 14 | 15 | An energy inventory of tidal disruption events. | MOCKLER B. and RAMIREZ-RUIZ E. | |
2021ApJ...907...77Z | 466 | D | X | 11 | 20 | 18 | Measuring black hole masses from tidal disruption events and testing the MBH-σ* relation. | ZHOU Z.Q., LIU F.K., KOMOSSA S., et al. | |
2021ApJ...908L..20H | 91 | X | 2 | 20 | 28 | Tidal disruption event hosts are green and centrally concentrated: signatures of a post-merger system. | HAMMERSTEIN E., GEZARI S., VAN VELZEN S., et al. | ||
2021ApJ...908....4V | 157 | D | X | 4 | 35 | 195 | Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. | VAN VELZEN S., GEZARI S., HAMMERSTEIN E., et al. | |
2021ApJ...909...64R | 45 | X | 1 | 3 | ~ | Detection of tidal disruption events around direct-collapse black holes at high redshifts with the James Webb Space Telescope. | REGOS E., VINKO J. and STERMECZKY Z.V. | ||
2021MNRAS.502.3385M | 45 | X | 1 | 44 | ~ | Limits on mass outflow from optical tidal disruption events. | MATSUMOTO T. and PIRAN T. | ||
2021ApJ...908..125C | 180 | X C | 3 | 9 | 16 | Radio monitoring of the tidal disruption event Swift J164449.3+573451 IV. Continued fading and non-relativistic expansion. | CENDES Y., EFTEKHARI T., BERGER E., et al. | ||
2021ApJ...908..179L | 135 | X | 3 | 9 | 11 | Elliptical accretion disk as a model for tidal disruption events. | LIU F.K., CAO C.Y., ABRAMOWICZ M.A., et al. | ||
2021ApJ...909..102B ![]() |
90 | X | 2 | 16 | 9 | A luminous X-ray transient in SDSS J143359.16+400636.0 a likely tidal disruption event. | BRIGHTMAN M., WARD C., STERN D., et al. | ||
2021ApJ...910...83H ![]() |
108 | D | C | 4 | 38 | 17 | A Swift fix for nuclear outbursts. | HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al. | |
2021ApJ...911...31J | 512 | D | X | 12 | 26 | 32 | Infrared echoes of optical tidal disruption events: ∼1% dust-covering factor or less at subparsec scale. | JIANG N., WANG T., HU X., et al. | |
2021MNRAS.504..792C | 180 | X | 4 | 17 | 29 | Accretion disc cooling and narrow absorption lines in the tidal disruption event AT 2019dsg. | CANNIZZARO G., WEVERS T., JONKER P.G., et al. | ||
2021ApJ...912..151W | 49 | X | 1 | 7 | 31 | Rapid accretion state transitions following the tidal disruption event AT2018fyk. | WEVERS T., PASHAM D.R., VAN VELZEN S., et al. | ||
2021NatAs...5..491H | 808 | X C | 17 | 11 | 25 | Delayed radio flares from a tidal disruption event. | HORESH A., CENKO S.B. and ARCAVI I. | ||
2021MNRAS.504.4730M | 108 | D | X | 3 | 20 | ~ | Hard X-ray emission from a Compton scattering corona in large black hole mass tidal disruption events. | MUMMERY A. and BALBUS S.A. | |
2021MNRAS.504.5144M | 466 | D | X C F | 9 | 29 | ~ | A maximum X-ray luminosity scale of disc-dominated tidal destruction events. | MUMMERY A. | |
2021ApJ...914..107C | 45 | X | 1 | 1 | ~ | High-energy emission from Tidal disruption events in active galactic nuclei. | CHAN C.-H., PIRAN T. and KROLIK J.H. | ||
2021MNRAS.505.1629M | 421 | D | X F | 9 | 13 | ~ | An upper observable black hole mass scale for tidal destruction events with thermal X-ray spectra. | MUMMERY A. and BALBUS S.A. | |
2021ApJ...917....9H | 583 | X | 13 | 15 | 18 | Discovery of a fast iron low-ionization outflow in the early evolution of the nearby tidal disruption event AT 2019qiz. | HUNG T., FOLEY R.J., VEILLEUX S., et al. | ||
2021ApJ...918...46W | 93 | X | 2 | 6 | 23 | Mass, spin, and ultralight boson constraints from the intermediate-mass black hole in the tidal disruption event 3XMM J215022.4-055108. | WEN S., JONKER P.G., STONE N.C., et al. | ||
2021MNRAS.507.6196I | 287 | D | X F | 6 | 12 | ~ | Host galaxy line diagnostics for the candidate tidal disruption events XMMSL1 J111527.3+180638 and PTF09axc. | INKENHAAG A., JONKER P.G., CANNIZZARO G., et al. | |
2021ApJ...919..127C | 136 | X C | 2 | 13 | 34 | Radio observations of an ordinary outflow from the tidal disruption event AT2019dsg. | CENDES Y., ALEXANDER K.D., BERGER E., et al. | ||
2021ApJ...920L...5H | 91 | X | 2 | 7 | 11 | Are delayed radio flares common in tidal disruption events? The case of the TDE iPTF 16fnl. | HORESH A., SFARADI I., FENDER R., et al. | ||
2021ApJ...920...12H | 46 | X | 1 | 9 | 9 | A possible tidal disruption event candidate in the black hole binary system of OJ 287. | HUANG S., HU S., YIN H., et al. | ||
2021ApJ...920...60J | 645 | D | S X | 14 | 6 | 1 | Long-term evolution of the short-term X-ray variability of the jetted TDE Swift J1644+57. | JIN C. | |
2021ApJ...921L..40C | 50 | X | 1 | 6 | 34 | Possible X-ray quasi-periodic eruptions in a tidal disruption event candidate. | CHAKRABORTY J., KARA E., MASTERSON M., et al. | ||
2022MNRAS.509.3504B | 47 | X | 1 | 18 | 3 | Searching for quasi-periodic oscillations in active galactic nuclei of the Chandra Deep Field South. | BAO T. and LI Z. | ||
2022ApJ...924...70M | 1607 | D | X C | 34 | 6 | 14 | Evidence for the preferential disruption of moderately massive stars by supermassive black holes. | MOCKLER B., TWUM A.A., AUCHETTL K., et al. | |
2022MNRAS.510.1627A | 53 | X | 1 | 4 | 26 | Tidal disruption discs formed and fed by stream-stream and stream-disc interactions in global GRHD simulations. | ANDALMAN Z.L., LISKA M.T.P., TCHEKHOVSKOY A., et al. | ||
2022ApJ...925...67L | 281 | X C | 5 | 11 | 11 | The UV/Optical Peak and X-Ray Brightening in TDE Candidate AT 2019azh: A Case of Stream-Stream Collision and Delayed Accretion. | LIU X.-L., DOU L.-M., CHEN J.-H., et al. | ||
2022MNRAS.510.3650M | 673 | D | X C F | 13 | 5 | 6 | Radio emission from outflow-cloud interaction and its constraint on tidal disruption event outflow. | MOU G., WANG T., WANG W., et al. | |
2022MNRAS.510.5426P | 887 | X C F | 17 | 7 | 9 | Optical line spectra of tidal disruption events from reprocessing in optically thick outflows. | PARKINSON E.J., KNIGGE C., MATTHEWS J.H., et al. | ||
2022ApJ...926..112B | 94 | C | 1 | 16 | 29 | Radio and X-Ray Observations of the Luminous Fast Blue Optical Transient AT 2020xnd. | BRIGHT J.S., MARGUTTI R., MATTHEWS D., et al. | ||
2022ApJ...926..142P | 94 | X | 2 | 7 | 12 | The Rapid X-Ray and UV Evolution of ASASSN-14ko. | PAYNE A.V., SHAPPEE B.J., HINKLE J.T., et al. | ||
2022ApJ...927L..19W | 112 | D | C | 3 | 11 | 6 | Revisiting the Rates and Demographics of Tidal Disruption Events: Effects of the Disk Formation Efficiency. | WONG T.H.T., PFISTER H. and DAI L. | |
2022ApJ...927...74M | 188 | X | 4 | 10 | 11 | High-resolution VLBI Observations of and Modeling the Radio Emission from the Tidal Disruption Event AT2019dsg. | MOHAN P., AN T., ZHANG Y., et al. | ||
2022MNRAS.511.5085M | 235 | X | 5 | 5 | 13 | What powers the radio emission in TDE AT2019dsg: A long-lived jet or the disruption itself? | MATSUMOTO T., PIRAN T. and KROLIK J.H. | ||
2022MNRAS.511.5328G | 373 | X C | 7 | 18 | 17 | AT2019azh: an unusually long-lived, radio-bright thermal tidal disruption event. | GOODWIN A.J., VAN VELZEN S., MILLER-JONES J.C.A., et al. | ||
2022A&A...659A..34C | 1326 | D | X C F | 27 | 18 | 24 | A detailed spectroscopic study of tidal disruption events. | CHARALAMPOPOULOS P., LELOUDAS G., MALESANI D.B., et al. | |
2022ApJ...925..143P | 47 | X | 1 | 21 | 7 | Light-curve Evolution of the Nearest Tidal Disruption Event: A Late-time, Radio-only Flare. | PERLMAN E.S., MEYER E.T., WANG Q.D., et al. | ||
2022A&A...660A.119Z | 140 | X C | 2 | 17 | 4 | Discovery of late-time X-ray flare and anomalous emission line enhancement after the nuclear optical outburst in a narrow-line Seyfert 1 Galaxy. | ZHANG W.J., SHU X.W., SHENG Z.F., et al. | ||
2022MNRAS.513.2422L | 93 | F | 1 | 32 | 9 | The prospects of finding tidal disruption events with 2.5-m Wide-Field Survey Telescope based on mock observations. | LIN Z., JIANG N. and KONG X. | ||
2022ApJ...930L...4W | 47 | X | 1 | 12 | 10 | Discovery of ATLAS17jrp as an Optical-, X-Ray-, and Infrared-bright Tidal Disruption Event in a Star-forming Galaxy. | WANG Y., JIANG N., WANG T., et al. | ||
2022ApJ...930...12H | 467 | X C | 9 | 28 | 23 | The Curious Case of ASASSN-20hx: A Slowly Evolving, UV- and X-Ray-Luminous, Ambiguous Nuclear Transient. | HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al. | ||
2022ApJ...932L..25L | 93 | X | 2 | 18 | 2 | GB6 J2113+1121: A Multiwavelength Flaring γ-Ray Blazar Temporally and Spatially Coincident with the Neutrino Event IceCube-191001A. | LIAO N.-H., SHENG Z.-F., JIANG N., et al. | ||
2022ApJ...933...31W | 683 | A | S X C | 13 | 2 | 5 | A Library of Synthetic X-Ray Spectra for Fitting Tidal Disruption Events. | WEN S., JONKER P.G., STONE N.C., et al. | |
2022ApJ...933...70L | 373 | X C | 7 | 11 | 8 | The Host Galaxy and Rapidly Evolving Broad-line Region in the Changing-look Active Galactic Nucleus 1ES 1927+654. | LI R., HO L.C., RICCI C., et al. | ||
2022ApJ...933..176S | 513 | X C | 10 | 17 | 10 | A Late-time Radio Flare Following a Possible Transition in Accretion State in the Tidal Disruption Event AT 2019azh. | SFARADI I., HORESH A., FENDER R., et al. | ||
2022ApJ...933..196H | 420 | X C | 8 | 32 | 13 | Investigating the Nature of the Luminous Ambiguous Nuclear Transient ASASSN-17jz. | HOLOIEN T.W.-S., NEUSTADT J.M.M., VALLELY P.J., et al. | ||
2022MNRAS.515.1146R | 205 | D | X F | 4 | 33 | 10 | The bulge masses of TDE host galaxies and their scaling with black hole mass. | RAMSDEN P., LANNING D., NICHOLL M., et al. | |
2022MNRAS.515.1699S | 700 | A | D | X C F | 14 | 5 | ~ | Radio emission from simulated tidal disruption events. | SPAULDING A. and CHANG P. |
2022MNRAS.515.2778H | 47 | X | 1 | 18 | ~ | Exploration of the origin of the 2020 X-ray outburst in OJ 287. | HUANG S., HU S., YIN H., et al. | ||
2022MNRAS.515.5198Y | 140 | X | 3 | 16 | 5 | An X-ray view of the ambiguous nuclear transient AT2019pev. | YU Z., KOCHANEK C.S., MATHUR S., et al. | ||
2022MNRAS.515.5604N | 205 | D | X F | 4 | 38 | 23 | Systematic light-curve modelling of TDEs: statistical differences between the spectroscopic classes. | NICHOLL M., LANNING D., RAMSDEN P., et al. | |
2022A&A...664A.158R ![]() |
112 | D | C | 2 | 41 | 5 | Energetic nuclear transients in luminous and ultraluminous infrared galaxies. | REYNOLDS T.M., MATTILA S., EFSTATHIOU A., et al. | |
2022ApJ...934..136X | 205 | D | X C | 4 | 8 | 3 | Quasi-perpendicular Shock Acceleration and Tidal Disruption Event Radio Flares. | XU S. | |
2022ApJ...935...91S | 345 | D | X | 8 | 17 | ~ | Geodesic Model of HF QPOs Tested for Black Holes in Spacetimes Reflecting the Effect of Surrounding Dark Matter. | STUCHLIK Z. and VRBA J. | |
2022MNRAS.516L..66Z | 140 | X | 3 | 16 | ~ | A new candidate for central tidal disruption event in SDSS J014124 + 010306 with broad Mg II line at z = 1.06. | ZHANG X.-G. | ||
2022Natur.606..261W | 93 | X | 2 | 33 | 3 | X-ray astronomy comes of age. | WILKES B.J., TUCKER W., SCHARTEL N., et al. | ||
2022ApJ...937....8Y | 187 | X C | 3 | 19 | 10 | The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflection, and Rapid Evolution of the Disk-Corona System. | YAO Y., LU W., GUOLO M., et al. | ||
2022ApJ...937L..28T | 159 | D | X | 4 | 23 | 15 | Dynamical Unification of Tidal Disruption Events. | THOMSEN L.L., KWAN T.M., DAI L., et al. | |
2022ApJ...938...28C | 169 | A | X C | 3 | 15 | 18 | A Mildly Relativistic Outflow Launched Two Years after Disruption in Tidal Disruption Event AT2018hyz. | CENDES Y., BERGER E., ALEXANDER K.D., et al. | |
2022MNRAS.517...76O | 373 | X C F | 6 | 18 | 8 | The nuclear transient AT 2017gge: a tidal disruption event in a dusty and gas-rich environment and the awakening of a dormant SMBH. | ONORI F., CANNIZZARO G., JONKER P.G., et al. | ||
2022MNRAS.517L..71Z | 47 | X | 1 | 10 | 1 | Modelling the flare in NGC 1097 from 1991 to 2004 as a tidal disruption event. | ZHANG X.-G. | ||
2022A&A...666A...6W | 47 | X | 1 | 14 | 9 | An elliptical accretion disk following the tidal disruption event AT 2020zso. | WEVERS T., NICHOLL M., GUOLO M., et al. | ||
2022PASJ...74.1220S | 93 | F | 1 | 18 | ~ | Large-scale magnetic fields enabling fitting of the high-frequency QPOs observed around supermassive black holes. | STUCHLIK Z., KOLOS M. and TURSUNOV A. | ||
2023MNRAS.518..847G | 250 | X C | 4 | 16 | 3 | Radio observations of the tidal disruption event AT2020opy: a luminous non-relativistic outflow encountering a dense circumnuclear medium. | GOODWIN A.J., MILLER-JONES J.C.A., VAN VELZEN S., et al. | ||
2022RAA....22l5016Z | 93 | C | 1 | 6 | 2 | A Possible 250 s X-Ray Quasi-periodicity in the Fast Blue Optical Transient AT2018cow. | ZHANG W., SHU X., CHEN J.-H., et al. | ||
2023A&A...669A..75L | 50 | X | 1 | 28 | 10 | Deciphering the extreme X-ray variability of the nuclear transient eRASSt J045650.3-203750 A likely repeating partial tidal disruption event. | LIU Z., MALYALI A., KRUMPE M., et al. | ||
2023MNRAS.519.5828M | 2470 | D | X C F | 48 | 19 | ~ | From X-rays to physical parameters: a comprehensive analysis of thermal tidal disruption event X-ray spectra. | MUMMERY A., WEVERS T., SAXTON R., et al. | |
2023MNRAS.520.2417W | 50 | X | 1 | 17 | ~ | The radio detection and accretion properties of the peculiar nuclear transient AT 2019avd. | WANG Y., BALDI R.D., DEL PALACIO S., et al. | ||
2023MNRAS.520.3549M | 100 | C | 1 | 14 | 5 | The rebrightening of a ROSAT-selected tidal disruption event: repeated weak partial disruption flares from a quiescent galaxy? | MALYALI A., LIU Z., RAU A., et al. | ||
2023MNRAS.521..389R | * | 6 | ~ | Day-time-scale variability in the radio light curve of the Tidal Disruption Event AT2022cmc: confirmation of a highly relativistic outflow. | RHODES L., BRIGHT J.S., FENDER R., et al. | ||||
2023A&A...671A..33S | 50 | X | 1 | 73 | ~ | Supersoft luminous X-ray sources in galactic nuclei. | SACCHI A., RISALITI G. and MINIUTTI G. | ||
2023PASP..135c4101G | 250 | A | D | X C | 5 | 4 | 1 | A Census of Archival X-Ray Spectra for Modeling Tidal Disruption Events. | GOLDTOOTH A., ZABLUDOFF A.I., WEN S., et al. |
2023MNRAS.521.3517H | 51 | X | 1 | 7 | 7 | TESS shines light on the origin of the ambiguous nuclear transient ASASSN-18el. | HINKLE J.T., KOCHANEK C.S., SHAPPEE B.J., et al. | ||
2023ApJ...948...68Z | 50 | X | 1 | 9 | ~ | Central BH Mass of Tidal Disruption Event Candidate SDSS J0159 through Long-term Optical Variabilities. | ZHANG X. | ||
2023A&A...672A.167H ![]() |
100 | X | 2 | 33 | 1 | Discovery of the luminous X-ray ignition eRASSt J234402.9-352640 I. Tidal disruption event or a rapid increase in accretion in an active galactic nucleus? | HOMAN D., KRUMPE M., MARKOWITZ A., et al. | ||
2023ApJ...948L..19S | 100 | X | 2 | 22 | 1 | Scary Barbie: An Extremely Energetic, Long-duration Tidal Disruption Event Candidate without a Detected Host Galaxy at z = 0.995. | SUBRAYAN B.M., MILISAVLJEVIC D., CHORNOCK R., et al. | ||
2023ApJ...948..119D | 50 | X | 1 | 50 | 2 | A Flat-spectrum Radio Transient at 122 Mpc Consistent with an Emerging Pulsar Wind Nebula. | DONG D.Z. and HALLINAN G. | ||
2023A&A...673A..95C | 100 | F | 1 | 26 | 9 | AT 2020wey and the class of faint and fast tidal disruption events. | CHARALAMPOPOULOS P., PURSIAINEN M., LELOUDAS G., et al. | ||
2023ApJ...950..153F | 100 | X | 2 | 19 | ~ | Fading AGNs in Poststarburst Galaxies. | FRENCH K.D., EARL N., NOVACK A.B., et al. | ||
2023MNRAS.518.5163C | 50 | X | 1 | 6 | ~ | X-ray from outflow-cloud interaction and its application in tidal disruption events. | CHEN J. and WANG W. | ||
2023MNRAS.518.5693M | 150 | X | 3 | 11 | 1 | Probing the tidal disruption event iPTF16axa with CLOUDY and disc-wind models. | MAGESHWARAN T., SHAW G. and BHATTACHARYYA S. | ||
2023MNRAS.518.5862M | 50 | X | 1 | 9 | ~ | Advective accretion disc-corona model with fallback for tidal disruption events. | MAGESHWARAN T. and BHATTACHARYYA S. | ||
2023MNRAS.519.2812C | 450 | X C F | 7 | 5 | 2 | Jets from SANE super-Eddington accretion discs: morphology, spectra, and their potential as targets for ngEHT. | CURD B., EMAMI R., ANANTUA R., et al. | ||
2023ApJ...951..134P | 250 | X C | 4 | 15 | 5 | Chandra, HST/STIS, NICER, Swift, and TESS Detail the Flare Evolution of the Repeating Nuclear Transient ASASSN -14ko. | PAYNE A.V., AUCHETTL K., SHAPPEE B.J., et al. | ||
2023ApJ...953L..23M | 1880 | T A | X C | 36 | 6 | ~ |
Evidence of a Massive Stellar Disruption in the X-Ray Spectrum of ASASSN-14li. |
MILLER J.M., MOCKLER B., RAMIREZ-RUIZ E., et al. |
© Université de Strasbourg/CNRS
• Contact