Kepler-88b , the SIMBAD biblio

Kepler-88b , the SIMBAD biblio (59 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.23CEST12:49:40


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2012Natur.486..375B viz 15       D               1 378 520 An abundance of small exoplanets around stars with a wide range of metallicities. BUCHHAVE L.A., LATHAM D.W., JOHANSEN A., et al.
2012ApJ...756..185F viz 15       D               1 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2011PASP..123..412W viz 15       D               1 2897 398 The Exoplanet Orbit Database. WRIGHT J.T., KAKHOURI O., MARCY G.W., et al.
2013ApJS..204...24B viz 16       D               1 3274 922 Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. BATALHA N.M., ROWE J.F., BRYSON S.T., et al.
2013ApJ...770...69P viz 16       D               1 245 238 A plateau in the planet population below twice the size of Earth. PETIGURA E.A., MARCY G.W. and HOWARD A.W.
2013MNRAS.434.1883K 56       D     X         2 6 13 A simple, quantitative method to infer the minimum atmospheric height of small exoplanets. KIPPING D.M., SPIEGEL D.S. and SASSELOV D.D.
2013ApJ...777....3N 1481     A     X C       37 4 122 KOI-142, the king of transit variations, is a pair of planets near the 2:1 resonance. NESVORNY D., KIPPING D., TERRELL D., et al.
2014ApJS..210...19B viz 16       D               1 5860 211 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014A&A...561L...1B 378     A     X         10 10 19 SOPHIE velocimetry of Kepler transit candidates. X. KOI-142c: first radial velocity confirmation of a non-transiting exoplanet discovered by transit timing. BARROS S.C.C., DIAZ R.F., SANTERNE A., et al.
2014ApJ...787..132D 205           X C       4 6 99 TTVFast: an efficient and accurate code for transit timing inversion problems. DECK K.M., AGOL E., HOLMAN M.J., et al.
2014ApJ...790...31N viz 275           X         7 14 13 Photo-dynamical analysis of three Kepler Objects of Interest with significant transit timing variations. NESVORNY D., KIPPING D., TERRELL D., et al.
2014ApJ...791...35L viz 16       D               1 800 137 Robotic laser adaptive optics imaging of 715 Kepler exoplanet candidates using Robo-AO. LAW N.M., MORTON T., BARANEC C., et al.
2015ApJS..217...16R viz 16       D               1 8625 149 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015ApJ...809....8B viz 16       D               1 112329 282 Terrestrial planet occurrence rates for the Kepler GK dwarf sample. BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al.
2015MNRAS.451.4060S 40           X         1 22 7 Ground-based transit observations of the HAT-P-18, HAT-P-19, HAT-P-27/WASP40 and WASP-21 systems. SEELIGER M., KITZE M., ERRMANN R., et al.
2015MNRAS.453.4089S 16       D               1 103 3 Tides alone cannot explain Kepler planets close to 2:1 MMR. SILBURT A. and REIN H.
2015MNRAS.454.4267B 80           X         2 11 27 Photodynamical mass determination of the multiplanetary system K2-19. BARROS S.C.C., ALMENARA J.M., DEMANGEON O., et al.
2016ApJ...821...96D 41           X         1 11 11 Transit timing variations for planets near eccentricity-type mean motion resonances. DECK K.M. and AGOL E.
2016ApJ...825...19W viz 18       D               1 99 221 Probabilistic mass-radius relationship for sub-Neptune-sized planets. WOLFGANG A., ROGERS L.A. and FORD E.B.
2016ApJS..225....9H viz 40           X         1 2132 124 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2016AJ....152..181H viz 16       D               1 9279 22 SETI observations of exoplanets with the Allen Telescope Array. HARP G.R., RICHARDS J., TARTER J.C., et al.
2017ApJ...834...17C viz 17       D               1 290 454 Probabilistic forecasting of the masses and radii of other worlds. CHEN J. and KIPPING D.
2017AJ....153...70S 41           X         1 15 13 Mass constraints of the WASP-47 planetary system from radial velocities. SINUKOFF E., HOWARD A.W., PETIGURA E.A., et al.
2017AJ....153..191S viz 81               F     1 41 23 Detection of the atmosphere of the 1.6 M⊕ exoplanet GJ 1132 b. SOUTHWORTH J., MANCINI L., MADHUSUDHAN N., et al.
2017MNRAS.466.1868C viz 16       D               1 176 21 An overabundance of low-density Neptune-like planets. CUBILLOS P., ERKAEV N.V., JUVAN I., et al.
2017A&A...601A.128N viz 42           X         1 10 10 Mass determination of K2-19b and K2-19c from radial velocities and transit timing variations. NESPRAL D., GANDOLFI D., DEEG H.J., et al.
2017AJ....154....5H viz 16       D               1 231 145 Kepler planet masses and eccentricities from TTV analysis. HADDEN S. and LITHWICK Y.
2017AJ....154..108J viz 16       D               1 3237 137 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017A&A...603A..30S viz 16       D               4 2500 58 Observational evidence for two distinct giant planet populations. SANTOS N.C., ADIBEKYAN V., FIGUEIRA P., et al.
2017A&A...605A..37D 1040     A S   X C       24 6 4 Spin dynamics of close-in planets exhibiting large transit timing variations. DELISLE J.-B., CORREIA A.C.M., LELEU A., et al.
2018A&A...615A..79V viz 82             C       2 83 9 Kepler Object of Interest Network. I. First results combining ground- and space-based observations of Kepler systems with transit timing variations. VON ESSEN C., OFIR A., DREIZLER S., et al.
2018ApJ...866...99B viz 16       D               1 7129 233 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018AJ....156..264F viz 16       D               1 1909 365 The California-Kepler Survey. VII. Precise planet radii leveraging Gaia DR2 reveal the stellar mass dependence of the Planet radius gap. FULTON B.J. and PETIGURA E.A.
2019MNRAS.482.4146D 17       D               1 19 8 Hidden planetary friends: on the stability of two-planet systems in the presence of a distant, inclined companion. DENHAM P., NAOZ S., HOANG B.-M., et al.
2019A&A...624A..71W 84           X         2 69 2 Comparative analysis of the influence of Sgr A* and nearby active galactic nuclei on the mass loss of known exoplanets. WISLOCKA A.M., KOVACEVIC A.B. and BALBI A.
2019AJ....157..171K viz 100       D     X         3 4069 2 Visual analysis and demographics of Kepler transit timing variations. KANE M., RAGOZZINE D., FLOWERS X., et al.
2019AJ....157..235C viz 393   K   D     X C       9 415 7 Observations of the Kepler field with TESS: predictions for planet yield and observable features. CHRIST C.N., MONTET B.T. and FABRYCKY D.C.
2019ApJ...880L...1A viz 42           X         1 146 ~ A gap in the mass distribution for warm Neptune and terrestrial planets. ARMSTRONG D.J., MERU F., BAYLISS D., et al.
2020AJ....159...41T viz 17       D               1 564 ~ Estimating planetary mass with deep learning. TASKER E.J., LANEUVILLE M. and GUTTENBERG N.
2020AJ....159..124K viz 43           X         1 131 ~ Searching the entirety of Kepler data. I. 17 new planet candidates including one Habitable Zone world. KUNIMOTO M., MATTHEWS J.M. and NGO H.
2020AJ....159..223D 426       S   X C       8 18 ~ Robustly detecting changes in warm Jupiters' transit impact parameters. DAWSON R.I.
2020AJ....159..239G viz 17       D               1 1408 ~ Updated parameters and a new transmission spectrum of HD 97658b. GUO X., CROSSFIELD I.J.M., DRAGOMIR D., et al.
2020AJ....159..242W viz 834     A     X C       19 16 ~ The discovery of the long-period, eccentric planet Kepler-88 d and system characterization with radial velocities and photodynamical analysis. WEISS L.M., FABRYCKY D.C., AGOL E., et al.
2020AJ....159..248K 45           X         1 26 62 Searching the entirety of Kepler data. II. Occurrence rate estimates for FGK stars. KUNIMOTO M. and MATTHEWS J.M.
2020PASP..132e4401Z 17       D               1 81 38 Utilizing small telescopes operated by citizen scientists for transiting Exoplanet follow-up. ZELLEM R.T., PEARSON K.A., BLASER E., et al.
2020MNRAS.496.3101P 43           X         1 7 ~ Resonance in the K2-19 system is at odds with its high reported eccentricities. PETIT A.C., PETIGURA E.A., DAVIES M.B., et al.
2020AJ....160..108B viz 17       D               1 6855 109 The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020A&A...640A..32H viz 44           X         1 13 17 Discovery and characterization of the exoplanets WASP-148b and c. A transiting system with two interacting giant planets. HEBRARD G., DIAZ R.F., CORREIA A.C.M., et al.
2021A&A...649L...5B 17       D               2 41 19 Dry or water world? How the water contents of inner sub-Neptunes constrain giant planet formation and the location of the water ice line. BITSCH B., RAYMOND S.N., BUCHHAVE L.A., et al.
2021MNRAS.505.1293S 87           X         2 53 7 Systematic search for long-term transit duration changes in Kepler transiting planets. SHAHAF S., MAZEH T., ZUCKER S., et al.
2021AJ....162..166M 17       D               2 22 19 Evidence for a nondichotomous solution to the Kepler dichotomy: mutual inclinations of Kepler planetary systems from transit duration variations. MILLHOLLAND S.C., HE M.Y., FORD E.B., et al.
2021ApJ...921...24S viz 17       D               1 328 1 The occurrence-weighted median planets discovered by transit surveys orbiting solar-type stars and their implications for planet formation and evolution. SCHLAUFMAN K.C. and HALPERN N.D.
2022ApJ...926..120V 45           X         1 645 13 ExoMiner: A Highly Accurate and Explainable Deep Learning Classifier That Validates 301 New Exoplanets. VALIZADEGAN H., MARTINHO M.J.S., WILKENS L.S., et al.
2022ApJS..261...26S viz 18       D               3 1893 2 Magnetic Activity and Physical Parameters of Exoplanet Host Stars Based on LAMOST DR7, TESS, Kepler, and K2 Surveys. SU T., ZHANG L.-Y., LONG L., et al.
2023MNRAS.519.6028R 19       D               1 86 7 Exoplanet atmosphere evolution: emulation with neural networks. ROGERS J.G., MUNOZ C.J., OWEN J.E., et al.
2023A&A...674A.120A 19       D               1 189 1 DREAM II. The spin-orbit angle distribution of close-in exoplanets under the lens of tides. ATTIA O., BOURRIER V., DELISLE J.-B., et al.
2023RAA....23f5005B 19       D               1 60 ~ Relation between Mass and Radius of Exoplanets Distinguished by their Density. BETZLER A.S. and MIRANDA J.G.V.
2023A&A...676L...8V 19       D               1 10 ~ Rocky sub-Neptunes formed by pebble accretion: Rain of rock from polluted envelopes. VAZAN A. and ORMEL C.W.
2024ApJS..270....8W 20       D               1 246 ~ The Kepler Giant Planet Search. I. A Decade of Kepler Planet-host Radial Velocities from W. M. Keck Observatory. WEISS L.M., ISAACSON H., HOWARD A.W., et al.

goto View the references in ADS