Kepler-56b , the SIMBAD biblio

Kepler-56b , the SIMBAD biblio (54 results) C.D.S. - SIMBAD4 rel 1.8 - 2023.03.30CEST00:03:24


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2012Natur.486..375B viz 16       D               1 378 334 An abundance of small exoplanets around stars with a wide range of metallicities. BUCHHAVE L.A., LATHAM D.W., JOHANSEN A., et al.
2012ApJ...756..185F viz 16       D               1 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2013ApJS..204...24B viz 16       D               1 3274 779 Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. BATALHA N.M., ROWE J.F., BRYSON S.T., et al.
2013ApJ...767..127H viz 16       D               1 189 177 Fundamental properties of Kepler planet-candidate host stars using asteroseismology. HUBER D., CHAPLIN W.J., CHRISTENSEN-DALSGAARD J., et al.
2013A&A...552A.119S viz 16       D               1 1487 42 Magnetic energy fluxes in sub-Alfvenic planet star and moon planet interactions. SAUR J., GRAMBUSCH T., DULING S., et al.
2013ApJ...775...34O 16       D               1 89 24 Condition for capture into first-order mean motion resonances and application to constraints on the origin of resonant systems. OGIHARA M. and KOBAYASHI H.
2014ApJS..210...19B viz 16       D               1 5860 162 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014ApJ...783....4W viz 16       D               1 487 55 Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 AU and validation of four planets from the Kepler multiple planet candidates. WANG J., XIE J.-W., BARCLAY T., et al.
2014ApJ...784...45R viz 16       D               1 1691 227 Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ROWE J.F., BRYSON S.T., MARCY G.W., et al.
2014ApJ...787...80H viz 16       D               2 261 93 Densities and eccentricities of 139 Kepler planets from transit time variations. HADDEN S. and LITHWICK Y.
2014ApJ...790..146F viz 16       D               1 918 322 Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates. FABRYCKY D.C., LISSAUER J.J., RAGOZZINE D., et al.
2014Natur.513..358P 35 37 Instrumentation for the detection and characterization of exoplanets. PEPE F., EHRENREICH D. and MEYER M.R.
2014A&A...572A...2B 40           X         1 14 24 Characterization of the planetary system Kepler-101 with HARPS-N. A hot super-Neptune with an Earth-sized low-mass companion. BONOMO A.S., SOZZETTI A., LOVIS C., et al.
2015A&A...573L...5C viz 84           X         2 6 29 Kepler-432b: a massive planet in a highly eccentric orbit transiting a red giant. CICERI S., LILLO-BOX J., SOUTHWORTH J., et al.
2015A&A...573A...3J 82             C       1 9 18 A planetary system and a highly eccentric brown dwarf around the giant stars HIP 67851 and HIP 97233. JONES M.I., JENKINS J.S., ROJO P., et al.
2015A&A...573A..36N 40           X         1 33 21 Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. I. A multiple planetary system around the red giant star TYC 1422-614-1. NIEDZIELSKI A., VILLAVER E., WOLSZCZAN A., et al.
2015ApJS..217...16R viz 16       D               1 8625 84 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015ApJ...802...57S 121           X C       2 7 9 Precise radial velocity measurements for Kepler giants hosting planetary candidates: Kepler-91 and KOI-1894. SATO B., HIRANO T., OMIYA M., et al.
2015ApJ...803....1N 40           X         1 31 9 Three red giants with substellar-mass companions. NIEDZIELSKI A., WOLSZCZAN A., NOWAK G., et al.
2015ApJ...809....8B viz 16       D               1 112329 139 Terrestrial planet occurrence rates for the Kepler GK dwarf sample. BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al.
2015MNRAS.453.4089S 16       D               1 103 3 Tides alone cannot explain Kepler planets close to 2:1 MMR. SILBURT A. and REIN H.
2016ApJ...823...29A 16       D               1 117 7 Spin-orbit alignment for three transiting hot jupiters: WASP-103b, WASP-87b, and WASP-66b. ADDISON B.C., TINNEY C.G., WRIGHT D.J., et al.
2016MNRAS.461.1841C 16       D               1 150 9 An upper boundary in the mass-metallicity plane of exo-Neptunes. COURCOL B., BOUCHY F. and DELEUIL M.
2016AJ....152..143V 42           X         1 20 21 The K2-ESPRINT project V: a short-period giant planet orbiting a subgiant star. VAN EYLEN V., ALBRECHT S., GANDOLFI D., et al.
2016AJ....152..158T viz 16       D               1 4387 18 Detection of potential transit signals in 17 quarters of Kepler data: results of the final Kepler mission transiting planet search (DR25). TWICKEN J.D., JENKINS J.M., SEADER S.E., et al.
2016AJ....152..165O 247           X C       5 4 14 The orbit and mass of the third planet in the Kepler-56 system. OTOR O.J., MONTET B.T., JOHNSON J.A., et al.
2017ApJ...834...17C viz 16       D               1 289 84 Probabilistic forecasting of the masses and radii of other worlds. CHEN J. and KIPPING D.
2017MNRAS.465.1308N 41           X         1 3 ~ A simple model to describe intrinsic stellar noise for exoplanet detection around red giants. NORTH T.S.H., CHAPLIN W.J., GILLILAND R.L., et al.
2017MNRAS.464.1709G 619     A D     X C F     14 4 8 Outer-planet scattering can gently tilt an inner planetary system. GRATIA P. and FABRYCKY D.
2017AJ....153..142P viz 99       D       C       2 30 17 Four sub-Saturns with dissimilar densities: windows into planetary cores and envelopes. PETIGURA E.A., SINUKOFF E., LOPEZ E.D., et al.
2017MNRAS.466.1868C viz 58       D     X         2 176 16 An overabundance of low-density Neptune-like planets. CUBILLOS P., ERKAEV N.V., JUVAN I., et al.
2017AJ....153..210H 41           X         1 19 14 Dynamically hot super-Earths from outer giant planet scattering. HUANG C.X., PETROVICH C. and DEIBERT E.
2017AJ....153..211Z viz 41           X         1 24 11 HAT-P-67b: an extremely low density Saturn transiting an F-subgiant confirmed via Doppler tomography. ZHOU G., BAKOS G.A., HARTMAN J.D., et al.
2017AJ....154....5H viz 99       D     X         3 231 38 Kepler planet masses and eccentricities from TTV analysis. HADDEN S. and LITHWICK Y.
2017AJ....154..108J viz 16       D               1 3237 46 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017A&A...603A..30S viz 16       D               6 2500 14 Observational evidence for two distinct giant planet populations. SANTOS N.C., ADIBEKYAN V., FIGUEIRA P., et al.
2018ApJ...866...99B viz 17       D               1 7129 101 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018AJ....156..264F viz 17       D               1 1909 112 The California-Kepler Survey. VII. Precise planet radii leveraging Gaia DR2 reveal the stellar mass dependence of the Planet radius gap. FULTON B.J. and PETIGURA E.A.
2019MNRAS.482.4146D 17       D               1 19 ~ Hidden planetary friends: on the stability of two-planet systems in the presence of a distant, inclined companion. DENHAM P., NAOZ S., HOANG B.-M., et al.
2019MNRAS.484.3233B 85               F     1 35 ~ HARPS-N radial velocities confirm the low densities of the Kepler-9 planets. BORSATO L., MALAVOLTA L., PIOTTO G., et al.
2019AJ....157..137K 85               F     1 10 ~ The misaligned orbit of the Earth-sized planet Kepler-408b. KAMIAKA S., BENOMAR O., SUTO Y., et al.
2019AJ....157..149L viz 128           X C       2 115 ~ Retired A stars and their companions. VIII. 15 new planetary signals around subgiants and transit parameters for California Planet Search planets with subgiant hosts. LUHN J.K., BASTIEN F.A., WRIGHT J.T., et al.
2019AJ....157..171K viz 17       D               1 4069 ~ Visual analysis and demographics of Kepler transit timing variations. KANE M., RAGOZZINE D., FLOWERS X., et al.
2019ApJ...880L...1A viz 17       D               1 146 ~ A gap in the mass distribution for warm Neptune and terrestrial planets. ARMSTRONG D.J., MERU F., BAYLISS D., et al.
2019A&A...630A.135U viz 17       D               1 501 ~ Beyond the exoplanet mass-radius relation. ULMER-MOLL S., SANTOS N.C., FIGUEIRA P., et al.
2020AJ....159...41T viz 17       D               1 564 ~ Estimating planetary mass with deep learning. TASKER E.J., LANEUVILLE M. and GUTTENBERG N.
2020ApJ...897....7M 104       D       C       2 36 ~ Tidal inflation reconciles low-density sub-Saturns with core accretion. MILLHOLLAND S., PETIGURA E. and BATYGIN K.
2020AJ....160..108B viz 17       D               1 6855 ~ The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020AJ....160..193D 44           X         1 7 ~ The TESS-Keck survey. III. A stellar obliquity measurement of TOI-1726 c. DAI F., ROY A., FULTON B., et al.
2021AJ....162...89Z viz 45           X         1 13 ~ Long-period jovian tilts the orbits of two sub-Neptunes relative to stellar spin axis in Kepler-129. ZHANG J., WEISS L.M., HUBER D., et al.
2022ApJ...932...78F 187           X         4 7 ~ Hiding Planets Near and Far: The Parameter Space of Hidden Companions for Known Planetary Systems. FARIDANI T.H., NAOZ S., WEI L., et al.
2022PASP..134h2001A 19       D               2 366 ~ Stellar Obliquities in Exoplanetary Systems. ALBRECHT S.H., DAWSON R.I. and WINN J.N.
2022PASJ...74.1309T 47           X         1 20 ~ A trio of giant planets orbiting evolved star HD 184010. TENG H.-Y., SATO B., TAKARADA T., et al.
2023A&A...670A..26T 50           X         1 16 ~ Occurrence rate of hot Jupiters orbiting red giant stars. TEMMINK M. and SNELLEN I.A.G.

goto View the references in ADS


2023.03.30-00:03:24

© Université de Strasbourg/CNRS

    • Contact