Kepler-33 , the SIMBAD biblio

Kepler-33 , the SIMBAD biblio (98 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.19CEST04:22:49


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2011ApJ...736...19B viz 15       D               1 1507 867 Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. BORUCKI W.J., KOCH D.G., BASRI G., et al.
2011ApJ...738..170M viz 15       D               4 997 230 On the low false positive probabilities of Kepler planet candidates. MORTON T.D. and JOHNSON J.A.
2011ApJS..197....2F viz 15       D               4 980 66 Transit timing observations from Kepler. I. Statistical analysis of the first four months. FORD E.B., ROWE J.F., FABRYCKY D.C., et al.
2011ApJS..197....8L viz 16       D               1 177 608 Architecture and dynamics of Kepler's candidate multiple transiting planet systems. LISSAUER J.J., RAGOZZINE D., FABRYCKY D.C., et al.
2012ApJS..199...24T viz 15       D               1 5394 66 Detection of potential transit signals in the first three quarters of Kepler mission data. TENENBAUM P., CHRISTIANSEN J.L., JENKINS J.M., et al.
2012ApJ...750..112L 2681     A D S   X C       68 11 269 Almost all of Kepler's multiple-planet candidates are planets. LISSAUER J.J., MARCY G.W., ROWE J.F., et al.
2012ApJ...752...53L 15       D               1 320 18 Debris disks in Kepler exoplanet systems. LAWLER S.M. and GLADMAN B.
2012ApJ...756..185F viz 15       D               4 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2012ApJ...756..186S viz 15       D               4 811 35 Transit timing observations from Kepler. VI. Potentially interesting candidate systems from fourier-based statistical tests. STEFFEN J.H., FORD E.B., ROWE J.F., et al.
2012RAA....12.1044B 39           X         1 51 16 Multi-planet extrasolar systems ? detection and dynamics. BEAUGE C., FERRAZ-MELLO S. and MICHTCHENKO T.A.
2013ApJ...762..129K 413     A S   X C       9 15 8 Decoupling phase variations in multi-planet systems. KANE S.R. and GELINO D.M.
2013ApJ...763...41C viz 16       D               6 97 40 On the relative sizes of planets within Kepler multiple-candidate systems. CIARDI D.R., FABRYCKY D.C., FORD E.B., et al.
2012MNRAS.427..770M 39           X         1 25 20 A dynamical analysis of the Kepler-11 planetary system. MIGASZEWSKI C., SLONINA M. and GOZDZIEWSKI K.
2013ApJS..204...24B viz 16       D               1 3274 922 Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. BATALHA N.M., ROWE J.F., BRYSON S.T., et al.
2013ApJ...766....9S viz 16       D               1 538 31 An ultraviolet investigation of activity on exoplanet host stars. SHKOLNIK E.L.
2013A&A...552A.119S viz 16       D               5 1487 118 Magnetic energy fluxes in sub-Alfvenic planet star and moon planet interactions. SAUR J., GRAMBUSCH T., DULING S., et al.
2013ApJ...774L..12S viz 16       D               1 469 25 A lack of short-period multiplanet systems with close-proximity pairs and the curious case of Kepler-42. STEFFEN J.H. and FARR W.M.
2013ApJ...775L..11M viz 16       D               1 2010 189 Stellar rotation periods of the Kepler Objects of Interest: a dearth of close-in planets around fast rotators. McQUILLAN A., MAZEH T. and AIGRAIN S.
2013ApJ...775...53H 79             C       1 93 195 Testing in situ assembly with the Kepler planet candidate sample. HANSEN B.M.S. and MURRAY N.
2013ApJS..208...16M viz 16       D               4 1518 139 Transit timing observations from Kepler. VIII. Catalog of transit timing measurements of the first twelve quarters. MAZEH T., NACHMANI G., HOLCZER T., et al.
2013AJ....146..122K 195           X C       4 42 4 Solar system moons as analogs for compact exoplanetary systems. KANE S.R., HINKEL N.R. and RAYMOND S.N.
2013A&A...556A.150S viz 16       D               1 635 211 SWEET-Cat: a catalogue of parameters for Stars With ExoplanETs. I. New atmospheric parameters and masses for 48 stars with planets. SANTOS N.C., SOUSA S.G., MORTIER A., et al.
2013MNRAS.435.1126B 55       D     X         2 72 20 Exoplanet predictions based on the generalized Titius-Bode relation. BOVAIRD T. and LINEWEAVER C.H.
2013MNRAS.436L..25M 741     A D S   X   F     18 20 3 A linear distribution of orbits in compact planetary systems ? MIGASZEWSKI C., GOZDZIEWSKI K. and SLONINA M.
2014ApJ...781...18C 80             C       2 19 59 The planetary system to KIC 11442793: a compact analogue to the solar system. CABRERA J., CSIZMADIA Sz., LEHMANN H., et al.
2014ApJS..210...19B viz 16       D               5 5860 211 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014ApJ...783..123C viz 16       D               1 221 18 Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations. CAMPANTE T.L., CHAPLIN W.J., LUND M.N., et al.
2014A&A...562A.108S viz 16       D               1 196 44 Search for 150 MHz radio emission from extrasolar planets in the TIFR GMRT Sky Survey. SIROTHIA S.K., LECAVELIER DES ETANGS A., GOPAL-KRISHNA, et al.
2014ApJ...784...44L 237           X C       5 47 179 Validation of Kepler's multiple planet candidates. II. Refined statistical framework and descriptions of systems of special interest. LISSAUER J.J., MARCY G.W., BRYSON S.T., et al.
2014ApJ...784...45R viz 16       D               1 1691 388 Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ROWE J.F., BRYSON S.T., MARCY G.W., et al.
2014AJ....147..119C viz 16       D               1 8010 91 Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1-Q12 data. COUGHLIN J.L., THOMPSON S.E., BRYSON S.T., et al.
2014A&A...564A..95P 39           X         1 33 44 Faint disks around classical T Tauri stars: Small but dense enough to form planets. PIETU V., GUILLOTEAU S., DI FOLCO E., et al.
2014ApJ...787...80H viz 16       D               3 261 190 Densities and eccentricities of 139 Kepler planets from transit time variations. HADDEN S. and LITHWICK Y.
2014ApJ...790...91S 79             C       1 94 19 Tests of in situ formation scenarios for compact multiplanet systems. SCHLAUFMAN K.C.
2014ApJ...790..146F viz 79           X         2 918 579 Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates. FABRYCKY D.C., LISSAUER J.J., RAGOZZINE D., et al.
2014AJ....148...28S 39           X         1 34 36 Planet Hunters. VI. An independent characterization of KOI-351 and several long period planet candidates from the Kepler archival data. SCHMITT J.R., WANG J., FISCHER D.A., et al.
2015ApJ...799..170C 122           X C       2 22 138 An ancient extrasolar system with five sub-earth-size planets. CAMPANTE T.L., BARCLAY T., SWIFT J.J., et al.
2015ApJ...801....3M viz 16       D               1 3357 109 Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. MAZEH T., PERETS H.B., McQUILLAN A., et al.
2015ApJS..217...16R viz 16       D               1 8625 149 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015MNRAS.448.1956S 40           X         1 84 51 The period ratio distribution of Kepler's candidate multiplanet systems. STEFFEN J.H. and HWANG J.A.
2015MNRAS.448.3608B viz 16       D               4 156 6 Using the inclinations of Kepler systems to prioritize new Titius-Bode-based exoplanet predictions. BOVAIRD T., LINEWEAVER C.H. and JACOBSEN S.K.
2015ApJ...806L..26V 41           X         1 13 47 Consolidating and crushing exoplanets: did it happen here? VOLK K. and GLADMAN B.
2015ApJ...807..170H viz 16       D               4 2117 10 Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. HOLCZER T., SHPORER A., MAZEH T., et al.
2015ApJ...813..100O viz 16       D               1 327 7 Deep GALEX UV survey of the Kepler field. I. Point source catalog. OLMEDO M., LLOYD J., MAMAJEK E.E., et al.
2015ApJ...814..130M viz 16       D               5 2846 162 An increase in the mass of planetary systems around lower-mass stars. MULDERS G.D., PASCUCCI I. and APAI D.
2016MNRAS.455.2980B 16       D               5 52 19 Oscillations of relative inclination angles in compact extrasolar planetary systems. BECKER J.C. and ADAMS F.C.
2016ApJ...821...47B viz 16       D               1 217 14 Efficient geometric probabilities of multi-transiting exoplanetary systems from CORBITS. BRAKENSIEK J. and RAGOZZINE D.
2016ApJ...822...86M viz 16       D               1 6130 337 False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al.
2016MNRAS.457.2480C 121           X   F     2 16 31 On the formation of compact planetary systems via concurrent core accretion and migration. COLEMAN G.A.L. and NELSON R.P.
2016AJ....152....8K viz 16       D               1 389 203 The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. KRAUS A.L., IRELAND M.J., HUBER D., et al.
2016A&A...591A.118S viz 16       D               1 31406 141 The PASTEL catalogue: 2016 version. SOUBIRAN C., LE CAMPION J.-F., BROUILLET N., et al.
2016ApJS..225....9H viz 16       D               4 2132 124 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2016ApJ...828...44H 444       S   X C       9 20 51 Numerical and analytical modeling of transit timing variations. HADDEN S. and LITHWICK Y.
2017AJ....153...71F viz 16       D               1 3575 164 The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. FURLAN E., CIARDI D.R., EVERETT M.E., et al.
2017AJ....153..180S 16       D               2 119 3 A search for lost planets in the Kepler multi-planet systems and the discovery of the long-period, Neptune-sized exoplanet Kepler-150 f. SCHMITT J.R., JENKINS J.M. and FISCHER D.A.
2017MNRAS.466.1805F 44           X         1 3 9 Transit probabilities around hypervelocity and runaway stars. FRAGIONE G. and GINSBURG I.
2017MNRAS.466.1868C viz 41           X         1 176 21 An overabundance of low-density Neptune-like planets. CUBILLOS P., ERKAEV N.V., JUVAN I., et al.
2017MNRAS.465.2634A viz 16       D               5 5400 21 Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. ARMSTRONG D.J., POLLACCO D. and SANTERNE A.
2017AJ....154....5H viz 41           X         1 231 145 Kepler planet masses and eccentricities from TTV analysis. HADDEN S. and LITHWICK Y.
2017MNRAS.468..549B 97       D     X         3 28 20 Effects of unseen additional planetary perturbers on compact extrasolar planetary systems. BECKER J.C. and ADAMS F.C.
2017AJ....154..107P viz 16       D               1 1306 226 The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. PETIGURA E.A., HOWARD A.W., MARCY G.W., et al.
2017AJ....154..108J viz 16       D               1 3237 137 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017NewA...55....1H 16       D               1 146 2 Multiple planetary systems: properties of the current sample. HOBSON M.J. and GOMEZ M.
2018ApJS..234....9O viz 16       D               3 436 14 A spectral approach to transit timing variations. OFIR A., XIE J.-W., JIANG C.-F., et al.
2018ApJ...855..115B viz 16       D               1 1305 5 Identifying young Kepler planet host stars from Keck-HIRES spectra of lithium. BERGER T.A., HOWARD A.W. and BOESGAARD A.M.
2018MNRAS.474.2094A viz 16       D               1 1073 143 Inferring probabilistic stellar rotation periods using Gaussian processes. ANGUS R., MORTON T., AIGRAIN S., et al.
2018ApJ...861..149F viz 16       D               1 2261 6 The Kepler Follow-up Observation Program. II. Stellar parameters from medium- and high-resolution spectroscopy. FURLAN E., CIARDI D.R., COCHRAN W.D., et al.
2018ApJS..237...38B viz 16       D               2 1111 42 Spectral properties of cool stars: extended abundance analysis of Kepler Objects of Interest. BREWER J.M. and FISCHER D.A.
2018ApJ...866...99B viz 16       D               1 7129 233 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018ApJ...866..104C 16       D               1 33 14 Identifying inflated super-Earths and photo-evaporated cores. CARRERA D., FORD E.B., IZIDORO A., et al.
2018AJ....156..292T viz 16       D               1 647 8 The effects of stellar companions on the observed transiting exoplanet radius distribution. TESKE J.K., CIARDI D.R., HOWELL S.B., et al.
2019ApJ...872...72C 100       D     X         3 15 ~ On the 9:7 mean motion resonance capture in a system of two equal-mass super-Earths. CUI Z., PAPALOIZOU J.C.B. and SZUSZKIEWICZ E.
2019ApJ...875...29M viz 17       D               1 2918 72 A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2020MNRAS.491.5595P 43           X         1 18 ~ Formation of compact systems of super-Earths via dynamical instabilities and giant impacts. POON S.T.S., NELSON R.P., JACOBSON S.A., et al.
2020ApJ...890...23L viz 17       D               5 4935 35 Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2020ApJ...893L...1W 85               F     1 51 33 The Kepler peas in a pod pattern is astrophysical. WEISS L.M. and PETIGURA E.A.
2020AJ....159..207B 17       D               2 150 ~ Transit duration variations in multiplanet systems. BOLEY A.C., VAN LAERHOVEN C. and GRANADOS CONTRERAS A.P.
2020AJ....159..280B viz 285       S   X C       4 5 152 The Gaia-Kepler Stellar Properties Catalog. I. Homogeneous fundamental properties for 186,301 Kepler stars. BERGER T.A., HUBER D., VAN SADERS J.L., et al.
2020AJ....160..108B viz 17       D               5 6855 109 The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020AJ....160..120J viz 17       D               1 365761 238 APOGEE data and spectral analysis from SDSS Data Release 16: seven years of observations including first results from APOGEE-South. JONSSON H., HOLTZMAN J.A., ALLENDE PRIETO C., et al.
2020MNRAS.498.5166P 43           X         1 25 ~ On the origin of the eccentricity dichotomy displayed by compact super-Earths: dynamical heating by cold giants. POON S.T.S. and NELSON R.P.
2020AJ....160..201C viz 43           X         1 31 22 A featureless infrared transmission spectrum for the super-puff planet Kepler-79d. CHACHAN Y., JONTOF-HUTTER D., KNUTSON H.A., et al.
2021AJ....161...68L viz 17       D               2 253 24 Hot stars with Kepler planets have high obliquities. LOUDEN E.M., WINN J.N., PETIGURA E.A., et al.
2020PASJ...72...24L 187       D     X         5 90 ~ The reliability of the Titius-Bode relation and its implications for the search for exoplanets. LARA P., CORDERO-TERCERO G. and ALLEN C.
2021AJ....162...98B viz 17       D               2 2175 ~ Seeking echoes of circumstellar disks in Kepler light curves. BROMLEY B.C., LEONARD A., QUINTANILLA A., et al.
2021ApJ...919..138T viz 17       D               1 531 12 Further evidence for tidal spin-up of hot Jupiter host stars. TEJADA AREVALO R.A., WINN J.N. and ANDERSON K.R.
2021ApJ...920...19G viz 17       D               1 807 5 A spectroscopic analysis of the California-Kepler Survey sample. II. Correlations of stellar metallicities with planetary architectures. GHEZZI L., MARTINEZ C.F., WILSON R.F., et al.
2021ApJ...920L..34M 87               F     1 48 16 Split peas in a pod: intra-system uniformity of super-Earths and sub-Neptunes. MILLHOLLAND S.C. and WINN J.N.
2021ApJ...921...24S viz 17       D               6 328 1 The occurrence-weighted median planets discovered by transit surveys orbiting solar-type stars and their implications for planet formation and evolution. SCHLAUFMAN K.C. and HALPERN N.D.
2022AJ....163..128W viz 18       D               1 1570 6 The influence of 10 unique chemical elements in shaping the distribution of Kepler planets. WILSON R.F., CANAS C.I., MAJEWSKI S.R., et al.
2022AJ....164...72M 90               F     1 61 6 Edge-of-the-Multis: Evidence for a Transition in the Outer Architectures of Compact Multiplanet Systems. MILLHOLLAND S.C., HE M.Y. and ZINK J.K.
2022ApJS..261...26S viz 18       D               5 1893 2 Magnetic Activity and Physical Parameters of Exoplanet Host Stars Based on LAMOST DR7, TESS, Kepler, and K2 Surveys. SU T., ZHANG L.-Y., LONG L., et al.
2022AJ....164..242S 959 T     D     X C       20 12 ~ Refining the Masses and Radii of the Star
Kepler-33 and its Five Transiting Planets.
SIKORA J., ROWE J., JONTOF-HUTTER D., et al.
2023A&A...670A..68M viz 205       D     X   F     4 42 3 Framework for the architecture of exoplanetary systems I. Four classes of planetary system architecture. MISHRA L., ALIBERT Y., UDRY S., et al.
2023AJ....166...94M 19       D               2 105 ~ exoMMR: A New Python Package to Confirm and Characterize Mean Motion Resonances. MacDONALD M.G., POLANIA VIVAS M.S., D'ANGIOLILLO S., et al.
2023ApJ...954..137S 93               F     1 64 ~ Can Cold Jupiters Sculpt the Edge-of-the-multis? SOBSKI N. and MILLHOLLAND S.C.
2024ApJ...962L...4X 100               F     1 15 ~ Earths Are Not Super-Earths, Saturns Are Not Jupiters: Imprints of Pressure-bump Planet Formation on Planetary Architectures. XU W. and WANG S.
2024AJ....167..103J 450           X C       8 190 ~ Kepler Multitransiting System Physical Properties and Impact Parameter Variations. JUDKOVSKY Y., OFIR A. and AHARONSON O.

goto View the references in ADS