other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
Kepler-278 , the SIMBAD biblio (57 results) | C.D.S. - SIMBAD4 rel 1.8 - 2023.11.29CET13:59:41 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2011ApJ...736...19B ![]() |
15 | D | 1 | 1507 | 867 | Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. | BORUCKI W.J., KOCH D.G., BASRI G., et al. | ||
2011ApJ...738..170M ![]() |
15 | D | 2 | 997 | 230 | On the low false positive probabilities of Kepler planet candidates. | MORTON T.D. and JOHNSON J.A. | ||
2011ApJS..197....2F ![]() |
15 | D | 2 | 980 | 66 | Transit timing observations from Kepler. I. Statistical analysis of the first four months. | FORD E.B., ROWE J.F., FABRYCKY D.C., et al. | ||
2011ApJS..197....8L ![]() |
16 | D | 1 | 177 | 608 | Architecture and dynamics of Kepler's candidate multiple transiting planet systems. | LISSAUER J.J., RAGOZZINE D., FABRYCKY D.C., et al. | ||
2012MNRAS.420L..23V ![]() |
39 | X | 1 | 94 | 22 | Identifying non-resonant Kepler planetary systems. | VERAS D. and FORD E.B. | ||
2012ApJS..199...24T ![]() |
15 | D | 1 | 5394 | 66 | Detection of potential transit signals in the first three quarters of Kepler mission data. | TENENBAUM P., CHRISTIANSEN J.L., JENKINS J.M., et al. | ||
2012ApJ...752...72D ![]() |
15 | D | 1 | 229 | 7 | A correlation between the eclipse depths of Kepler gas giant candidates and the metallicities of their parent stars. | DODSON-ROBINSON S.E. | ||
2012Natur.486..375B ![]() |
15 | D | 1 | 378 | 520 | An abundance of small exoplanets around stars with a wide range of metallicities. | BUCHHAVE L.A., LATHAM D.W., JOHANSEN A., et al. | ||
2012ApJ...756..185F ![]() |
15 | D | 2 | 1856 | 44 | Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. | FORD E.B., RAGOZZINE D., ROWE J.F., et al. | ||
2012ApJ...756..186S ![]() |
15 | D | 2 | 811 | 35 | Transit timing observations from Kepler. VI. Potentially interesting candidate systems from fourier-based statistical tests. | STEFFEN J.H., FORD E.B., ROWE J.F., et al. | ||
2013ApJ...767..127H ![]() |
16 | D | 1 | 189 | 246 | Fundamental properties of Kepler planet-candidate host stars using asteroseismology. | HUBER D., CHAPLIN W.J., CHRISTENSEN-DALSGAARD J., et al. | ||
2013ApJ...774L..12S ![]() |
16 | D | 1 | 469 | 25 | A lack of short-period multiplanet systems with close-proximity pairs and the curious case of Kepler-42. | STEFFEN J.H. and FARR W.M. | ||
2013ApJ...775L..11M ![]() |
16 | D | 1 | 2010 | 189 | Stellar rotation periods of the Kepler Objects of Interest: a dearth of close-in planets around fast rotators. | McQUILLAN A., MAZEH T. and AIGRAIN S. | ||
2013ApJS..208...16M ![]() |
16 | D | 2 | 1518 | 139 | Transit timing observations from Kepler. VIII. Catalog of transit timing measurements of the first twelve quarters. | MAZEH T., NACHMANI G., HOLCZER T., et al. | ||
2014ApJS..210...19B ![]() |
16 | D | 2 | 5860 | 211 | Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). | BURKE C.J., BRYSON S.T., MULLALLY F., et al. | ||
2014ApJ...783....4W ![]() |
16 | D | 1 | 487 | 103 | Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 AU and validation of four planets from the Kepler multiple planet candidates. | WANG J., XIE J.-W., BARCLAY T., et al. | ||
2014ApJ...784...45R ![]() |
16 | D | 1 | 1691 | 388 | Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. | ROWE J.F., BRYSON S.T., MARCY G.W., et al. | ||
2014AJ....147..119C ![]() |
16 | D | 1 | 8010 | 91 | Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1-Q12 data. | COUGHLIN J.L., THOMPSON S.E., BRYSON S.T., et al. | ||
2014ApJ...788L...9B ![]() |
16 | D | 1 | 293 | 26 | Larger planet radii inferred from stellar "flicker" brightness variations of bright planet-host stars. | BASTIEN F.A., STASSUN K.G. and PEPPER J. | ||
2015ApJ...801....3M ![]() |
16 | D | 1 | 3357 | 109 | Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. | MAZEH T., PERETS H.B., McQUILLAN A., et al. | ||
2015ApJS..217...16R ![]() |
16 | D | 1 | 8625 | 149 | Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). | ROWE J.F., COUGHLIN J.L., ANTOCI V., et al. | ||
2015ApJ...807..170H ![]() |
16 | D | 2 | 2117 | 10 | Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. | HOLCZER T., SHPORER A., MAZEH T., et al. | ||
2015ApJ...808..126V | 159 | X | 4 | 105 | 201 | Eccentricity from transit photometry: small planets in Kepler multi-planet systems have low eccentricities. | VAN EYLEN V. and ALBRECHT S. | ||
2015ApJ...808..187B ![]() |
16 | D | 1 | 540 | 73 | The metallicities of stars with and without transiting planets. | BUCHHAVE L.A. and LATHAM D.W. | ||
2016ApJ...822...86M ![]() |
16 | D | 1 | 6130 | 337 | False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. | MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al. | ||
2016A&A...589A.124L | 56 | D | X | 2 | 16 | 3 | Close-in planets around giant stars. Lack of hot-Jupiters and prevalence of multiplanetary systems. | LILLO-BOX J., BARRADO D. and CORREIA A.C.M. | |
2016AJ....152....6W ![]() |
16 | D | 4 | 3060 | 13 | Calibration of LAMOST stellar surface gravities using the Kepler asteroseismic data. | WANG L., WANG W., WU Y., et al. | ||
2016AJ....152....8K ![]() |
16 | D | 1 | 389 | 203 | The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. | KRAUS A.L., IRELAND M.J., HUBER D., et al. | ||
2016MNRAS.460.3179W ![]() |
16 | D | 1 | 77460 | 19 | Distance and extinction determination for APOGEE stars with Bayesian method. | WANG J., SHI J., PAN K., et al. | ||
2016ApJS..225....9H ![]() |
16 | D | 2 | 2132 | 124 | Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. | HOLCZER T., MAZEH T., NACHMANI G., et al. | ||
2016A&A...594A..39F ![]() |
16 | D | 1 | 51410 | 86 | Activity indicators and stellar parameters of the Kepler targets. An application of the ROTFIT pipeline to LAMOST-Kepler stellar spectra. | FRASCA A., MOLENDA-ZAKOWICZ J., DE CAT P., et al. | ||
2017AJ....153...71F ![]() |
16 | D | 1 | 3575 | 164 | The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. | FURLAN E., CIARDI D.R., EVERETT M.E., et al. | ||
2017MNRAS.465.2634A ![]() |
16 | D | 2 | 5400 | 21 | Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. | ARMSTRONG D.J., POLLACCO D. and SANTERNE A. | ||
2017ApJ...844..102H ![]() |
16 | D | 1 | 2236 | 180 | Asteroseismology and Gaia: testing scaling relations using 2200 Kepler stars with TGAS parallaxes. | HUBER D., ZINN J., BOJSEN-HANSEN M., et al. | ||
2017AJ....154..107P ![]() |
16 | D | 1 | 1306 | 226 | The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. | PETIGURA E.A., HOWARD A.W., MARCY G.W., et al. | ||
2017AJ....154..108J ![]() |
16 | D | 1 | 3237 | 137 | The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. | JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al. | ||
2017A&A...603A..30S ![]() |
16 | D | 4 | 2500 | 58 | Observational evidence for two distinct giant planet populations. | SANTOS N.C., ADIBEKYAN V., FIGUEIRA P., et al. | ||
2018AJ....155...68W ![]() |
16 | D | 1 | 509 | 18 | Elemental abundances of Kepler Objects of Interest in APOGEE. I. Two distinct orbital period regimes inferred from host star iron abundances. | WILSON R.F., TESKE J., MAJEWSKI S.R., et al. | ||
2018ApJ...855..115B ![]() |
16 | D | 3 | 1305 | 5 | Identifying young Kepler planet host stars from Keck-HIRES spectra of lithium. | BERGER T.A., HOWARD A.W. and BOESGAARD A.M. | ||
2018AJ....156...18P ![]() |
16 | D | 1 | 51824 | 872 | Binary companions of evolved stars in APOGEE DR14: search method and catalog of ∼5000 companions. | PRICE-WHELAN A.M., HOGG D.W., RIX H.-W., et al. | ||
2018ApJ...861..149F ![]() |
16 | D | 2 | 2261 | 6 | The Kepler Follow-up Observation Program. II. Stellar parameters from medium- and high-resolution spectroscopy. | FURLAN E., CIARDI D.R., COCHRAN W.D., et al. | ||
2018AJ....156...90H ![]() |
16 | D | 1 | 18080 | 37 | A new catalog of radial velocity standard stars from the APOGEE data. | HUANG Y., LIU X.-W., CHEN B.-Q., et al. | ||
2018ApJS..237...38B ![]() |
16 | D | 1 | 1111 | 42 | Spectral properties of cool stars: extended abundance analysis of Kepler Objects of Interest. | BREWER J.M. and FISCHER D.A. | ||
2018ApJ...866...99B ![]() |
16 | D | 1 | 7129 | 233 | Revised radii of Kepler stars and planet's using Gaia Data Release 2. | BERGER T.A., HUBER D., GAIDOS E., et al. | ||
2019ApJ...875...29M ![]() |
17 | D | 1 | 2918 | 72 | A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. | MARTINEZ C.F., CUNHA K., GHEZZI L., et al. | ||
2019AJ....157..192C ![]() |
84 | C | 1 | 28 | 20 | The curious case of KOI 4: confirming Kepler's first exoplanet detection. | CHONTOS A., HUBER D., LATHAM D.W., et al. | ||
2019ApJ...879...69T | 17 | D | 1 | 222617 | 141 | The Payne: self-consistent ab initio fitting of stellar spectra. | TING Y.-S., CONROY C., RIX H.-W., et al. | ||
2020ApJ...890...23L ![]() |
17 | D | 2 | 4935 | 35 | Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. | LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al. | ||
2020A&A...634A..29J ![]() |
7407 | T K A | D | S X C | 172 | 14 | ~ |
Gemini-GRACES high-quality spectra of Kepler evolved stars with transiting planets. I. Detailed characterization of multi-planet systems Kepler-278 and Kepler-391. |
JOFRE E., ALMENARA J.M., PETRUCCI R., et al. |
2020AJ....160..108B ![]() |
17 | D | 2 | 6855 | 109 | The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. | BERGER T.A., HUBER D., GAIDOS E., et al. | ||
2020AJ....160..120J ![]() |
17 | D | 1 | 365761 | 238 | APOGEE data and spectral analysis from SDSS Data Release 16: seven years of observations including first results from APOGEE-South. | JONSSON H., HOLTZMAN J.A., ALLENDE PRIETO C., et al. | ||
2020ApJ...900....4S ![]() |
17 | D | 1 | 121537 | 14 | The age distribution of stars in the Milky Way bulge. | SIT T. and NESS M.K. | ||
2021ApJ...909..115C ![]() |
17 | D | 1 | 2175 | 13 | Planets Across Space and Time (PAST). I. Characterizing the memberships of Galactic components and stellar ages: revisiting the kinematic methods and applying to planet host stars. | CHEN D.-C., XIE J.-W., ZHOU J.-L., et al. | ||
2021AJ....162...98B ![]() |
17 | D | 2 | 2175 | ~ | Seeking echoes of circumstellar disks in Kepler light curves. | BROMLEY B.C., LEONARD A., QUINTANILLA A., et al. | ||
2022AJ....163...91J | 108 | D | X | 3 | 248 | ~ | Physical properties and impact parameter variations of Kepler planets from analytic light-curve modeling. | JUDKOVSKY Y., OFIR A. and AHARONSON O. | |
2022AJ....163..128W ![]() |
18 | D | 1 | 1570 | 6 | The influence of 10 unique chemical elements in shaping the distribution of Kepler planets. | WILSON R.F., CANAS C.I., MAJEWSKI S.R., et al. | ||
2022ApJS..261...26S ![]() |
18 | D | 6 | 1893 | 2 | Magnetic Activity and Physical Parameters of Exoplanet Host Stars Based on LAMOST DR7, TESS, Kepler, and K2 Surveys. | SU T., ZHANG L.-Y., LONG L., et al. |
© Université de Strasbourg/CNRS
• Contact