other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
Kepler-1625 , the SIMBAD biblio (44 results) | C.D.S. - SIMBAD4 rel 1.8 - 2023.01.30CET19:13:39 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2013ApJ...776...10W | 16 | D | 1 | 50 | 28 | Planet hunters. V. A confirmed jupiter-size planet in the habitable zone and 42 planet candidates from the Kepler archive data. | WANG J., FISCHER D.A., BARCLAY T., et al. | ||
2015ApJ...801....3M ![]() |
16 | D | 1 | 3357 | 52 | Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. | MAZEH T., PERETS H.B., McQUILLAN A., et al. | ||
2015ApJ...807..170H ![]() |
16 | D | 1 | 2117 | 10 | Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. | HOLCZER T., SHPORER A., MAZEH T., et al. | ||
2015ApJ...809....8B ![]() |
16 | D | 1 | 112329 | 139 | Terrestrial planet occurrence rates for the Kepler GK dwarf sample. | BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al. | ||
2015ApJ...814..130M ![]() |
16 | D | 1 | 2846 | 46 | An increase in the mass of planetary systems around lower-mass stars. | MULDERS G.D., PASCUCCI I. and APAI D. | ||
2016ApJ...822...86M ![]() |
16 | D | 1 | 6129 | 192 | False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. | MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al. | ||
2016ApJS..225....9H ![]() |
16 | D | 2 | 2132 | 33 | Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. | HOLCZER T., MAZEH T., NACHMANI G., et al. | ||
2017AJ....153...66Z ![]() |
16 | D | 1 | 1663 | 31 | Robo-AO Kepler Planetary Candidate Survey. III. Adaptive optics imaging of 1629 Kepler exoplanet candidate host stars. | ZIEGLER C., LAW N.M., MORTON T., et al. | ||
2017AJ....153...71F ![]() |
16 | D | 1 | 3575 | 46 | The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. | FURLAN E., CIARDI D.R., EVERETT M.E., et al. | ||
2017MNRAS.465.2634A ![]() |
16 | D | 1 | 5400 | 9 | Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. | ARMSTRONG D.J., POLLACCO D. and SANTERNE A. | ||
2016PASP..128g4502M ![]() |
16 | D | 1 | 305 | 14 | Identifying false alarms in the Kepler planet candidate catalog. | MULLALLY F., COUGHLIN J.L., THOMPSON S.E., et al. | ||
2017AJ....154..107P ![]() |
16 | D | 1 | 1306 | 56 | The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. | PETIGURA E.A., HOWARD A.W., MARCY G.W., et al. | ||
2017AJ....154..108J ![]() |
16 | D | 1 | 3237 | 46 | The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. | JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al. | ||
2017A&A...603A..30S ![]() |
16 | D | 2 | 2500 | 14 | Observational evidence for two distinct giant planet populations. | SANTOS N.C., ADIBEKYAN V., FIGUEIRA P., et al. | ||
2018AJ....155...36T | 87 | X | 2 | 5 | 18 | HEK. VI. On the dearth of Galilean analogs in Kepler, and the exomoon candidate Kepler-1625b I. | TEACHEY A., KIPPING D.M. and SCHMITT A.R. | ||
2018ApJ...855..115B ![]() |
17 | D | 1 | 1305 | 2 | Identifying young Kepler planet host stars from Keck-HIRES spectra of lithium. | BERGER T.A., HOWARD A.W. and BOESGAARD A.M. | ||
2018A&A...610A..39H | 167 | X | 4 | 9 | 7 | The nature of the giant exomoon candidate Kepler-1625 b-i. | HELLER R. | ||
2018MNRAS.474.2094A ![]() |
17 | D | 1 | 1073 | 17 | Inferring probabilistic stellar rotation periods using Gaussian processes. | ANGUS R., MORTON T., AIGRAIN S., et al. | ||
2018ApJ...861..149F ![]() |
17 | D | 1 | 2261 | ~ | The Kepler Follow-up Observation Program. II. Stellar parameters from medium- and high-resolution spectroscopy. | FURLAN E., CIARDI D.R., COCHRAN W.D., et al. | ||
2018A&A...617A..49R | 461 | X C | 10 | 2 | 3 | Revisiting the exomoon candidate signal around Kepler-1625 b. | RODENBECK K., HELLER R., HIPPKE M., et al. | ||
2018ApJ...866...99B ![]() |
17 | D | 1 | 7129 | 101 | Revised radii of Kepler stars and planet's using Gaia Data Release 2. | BERGER T.A., HUBER D., GAIDOS E., et al. | ||
2018ApJ...869L..27H | 359 | A | X C | 8 | 2 | ~ |
Catching a planet: a tidal capture origin for the oxomoon candidate Kepler 1625b I. |
HAMERS A.S. and PORTEGIES ZWART S.F. | |
2019MNRAS.483.3919V | 43 | X | 1 | 7 | ~ | Explicit relations and criteria for eclipses, transits, and occultations. | VERAS D. | ||
2019ApJ...875...29M ![]() |
17 | D | 1 | 2918 | ~ | A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. | MARTINEZ C.F., CUNHA K., GHEZZI L., et al. | ||
2019ApJ...875L..25M | 494 | T A | X C | 10 | 2 | ~ |
Transits of inclined exomoons-hide and seek and an application to Kepler-1625. |
MARTIN D.V., FABRYCKY D.C. and MONTET B.T. | |
2019A&A...624A..95H | 596 | T | X C | 12 | 2 | ~ |
An alternative interpretation of the exomoon candidate signal in the combined Kepler and Hubble data of Kepler-1625. |
HELLER R., RODENBECK K. and BRUNO G. | |
2019A&A...624A.120V | 43 | X | 1 | 7 | ~ | Survivability of planetary systems in young and dense star clusters. | VAN ELTEREN A., PORTEGIES ZWART S., PELUPESSY I., et al. | ||
2019ApJ...877L..15K | 281 | T A | X | 6 | 2 | ~ |
No evidence for lunar transit in new analysis of Hubble Space Telescope Observations of the Kepler-1625 system. |
KREIDBERG L., LUGER R. and BEDELL M. | |
2019ApJ...885..168O | 43 | X | 1 | 40 | ~ | Sodium and potassium signatures of volcanic satellites orbiting close-in gas giant exoplanets. | OZA A.V., JOHNSON R.E., LELLOUCH E., et al. | ||
2020ApJ...890...23L ![]() |
17 | D | 1 | 4935 | ~ | Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. | LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al. | ||
2020AJ....159..131P | 44 | X | 1 | 14 | ~ | Exploring whether super-puffs can be explained as ringed exoplanets. | PIRO A.L. and VISSAPRAGADA S. | ||
2020AJ....159..142T | 783 | A | D | X C | 18 | 4 | ~ |
Loose ends for the exomoon candidate host Kepler-1625b. |
TEACHEY A., KIPPING D., BURKE C.J., et al. |
2020A&A...635A..59T | 853 | A | X C | 19 | 3 | ~ |
Radial velocity constraints on the long-period transiting planet Kepler-1625 b with CARMENES. |
TIMMERMANN A., HELLER R., REINERS A., et al. | |
2020A&A...635A.191M | 17 | D | 2 | 42 | ~ | Spatial distribution of exoplanet candidates based on Kepler and Gaia data. | MALIUK A. and BUDAJ J. | ||
2020AJ....159..260R | 392 | S X C | 7 | 2 | ~ | Orbital stability of exomoons and submoons with applications to Kepler 1625b-I. | ROSARIO-FRANCO M., QUARLES B., MUSIELAK Z.E., et al. | ||
2020MNRAS.495.3763M | 636 | A | X C | 14 | 4 | ~ |
Exploring formation scenarios for the exomoon candidate Kepler 1625b I. |
MORAES R.A. and VIEIRA NETO E. | |
2020AJ....160..108B ![]() |
17 | D | 1 | 6855 | ~ | The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. | BERGER T.A., HUBER D., GAIDOS E., et al. | ||
2020AJ....160..194T | 87 | C | 1 | 39 | ~ | Impact of tides on the potential for exoplanets to host exomoons. | TOKADJIAN A. and PIRO A.L. | ||
2021MNRAS.501.2378F | 90 | X | 2 | 27 | ~ | Exomoon candidates from transit timing variations: eightKeplersystems with TTVs explainable by photometrically unseen exomoons. | FOX C. and WIEGERT P. | ||
2022MNRAS.510.2583M | 93 | X | 2 | 2 | ~ | On the stability of additional moons orbiting Kepler-1625 b. | MORAES R.A., BORDERES-MOTTA G., WINTER O.C., et al. | ||
2022MNRAS.512.1032S | 19 | D | 1 | 4 | ~ | Cronomoons: origin, dynamics, and light-curve features of ringed exomoons. | SUCERQUIA M., ALVARADO-MONTES J.A., BAYO A., et al. | ||
2022ApJ...929L...2T | 187 | S X | 3 | 4 | ~ | Probing Planets with Exomoons: The Cases of Kepler-1708 b and Kepler-1625 b. | TOKADJIAN A. and PIRO A.L. | ||
2022NatAs...6..367K | 93 | C | 1 | 35 | ~ | An exomoon survey of 70 cool giant exoplanets and the new candidate Kepler-1708 b-i. | KIPPING D., BRYSON S., BURKE C., et al. | ||
2022A&A...662A..37H | 47 | X | 1 | 3 | ~ | Pandora: A fast open-source exomoon transit detection algorithm. | HIPPKE M. and HELLER R. |
© Université de Strasbourg/CNRS
• Contact