Kepler-1625 , the SIMBAD biblio

Kepler-1625 , the SIMBAD biblio (44 results) C.D.S. - SIMBAD4 rel 1.8 - 2023.01.30CET19:13:39

Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2013ApJ...776...10W 16       D               1 50 28 Planet hunters. V. A confirmed jupiter-size planet in the habitable zone and 42 planet candidates from the Kepler archive data. WANG J., FISCHER D.A., BARCLAY T., et al.
2015ApJ...801....3M viz 16       D               1 3357 52 Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. MAZEH T., PERETS H.B., McQUILLAN A., et al.
2015ApJ...807..170H viz 16       D               1 2117 10 Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. HOLCZER T., SHPORER A., MAZEH T., et al.
2015ApJ...809....8B viz 16       D               1 112329 139 Terrestrial planet occurrence rates for the Kepler GK dwarf sample. BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al.
2015ApJ...814..130M viz 16       D               1 2846 46 An increase in the mass of planetary systems around lower-mass stars. MULDERS G.D., PASCUCCI I. and APAI D.
2016ApJ...822...86M viz 16       D               1 6129 192 False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al.
2016ApJS..225....9H viz 16       D               2 2132 33 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2017AJ....153...66Z viz 16       D               1 1663 31 Robo-AO Kepler Planetary Candidate Survey. III. Adaptive optics imaging of 1629 Kepler exoplanet candidate host stars. ZIEGLER C., LAW N.M., MORTON T., et al.
2017AJ....153...71F viz 16       D               1 3575 46 The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. FURLAN E., CIARDI D.R., EVERETT M.E., et al.
2017MNRAS.465.2634A viz 16       D               1 5400 9 Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. ARMSTRONG D.J., POLLACCO D. and SANTERNE A.
2016PASP..128g4502M viz 16       D               1 305 14 Identifying false alarms in the Kepler planet candidate catalog. MULLALLY F., COUGHLIN J.L., THOMPSON S.E., et al.
2017AJ....154..107P viz 16       D               1 1306 56 The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. PETIGURA E.A., HOWARD A.W., MARCY G.W., et al.
2017AJ....154..108J viz 16       D               1 3237 46 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017A&A...603A..30S viz 16       D               2 2500 14 Observational evidence for two distinct giant planet populations. SANTOS N.C., ADIBEKYAN V., FIGUEIRA P., et al.
2018AJ....155...36T 87           X         2 5 18 HEK. VI. On the dearth of Galilean analogs in Kepler, and the exomoon candidate Kepler-1625b I. TEACHEY A., KIPPING D.M. and SCHMITT A.R.
2018ApJ...855..115B viz 17       D               1 1305 2 Identifying young Kepler planet host stars from Keck-HIRES spectra of lithium. BERGER T.A., HOWARD A.W. and BOESGAARD A.M.
2018A&A...610A..39H 167           X         4 9 7 The nature of the giant exomoon candidate Kepler-1625 b-i. HELLER R.
2018MNRAS.474.2094A viz 17       D               1 1073 17 Inferring probabilistic stellar rotation periods using Gaussian processes. ANGUS R., MORTON T., AIGRAIN S., et al.
2018ApJ...861..149F viz 17       D               1 2261 ~ The Kepler Follow-up Observation Program. II. Stellar parameters from medium- and high-resolution spectroscopy. FURLAN E., CIARDI D.R., COCHRAN W.D., et al.
2018A&A...617A..49R 461           X C       10 2 3 Revisiting the exomoon candidate signal around Kepler-1625 b. RODENBECK K., HELLER R., HIPPKE M., et al.
2018ApJ...866...99B viz 17       D               1 7129 101 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018ApJ...869L..27H 359     A     X C       8 2 ~ Catching a planet: a tidal capture origin for the oxomoon candidate
Kepler 1625b I.
2019MNRAS.483.3919V 43           X         1 7 ~ Explicit relations and criteria for eclipses, transits, and occultations. VERAS D.
2019ApJ...875...29M viz 17       D               1 2918 ~ A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2019ApJ...875L..25M 494 T   A     X C       10 2 ~ Transits of inclined exomoons-hide and seek and an application to
2019A&A...624A..95H 596 T         X C       12 2 ~ An alternative interpretation of the exomoon candidate signal in the combined Kepler and Hubble data of
2019A&A...624A.120V 43           X         1 7 ~ Survivability of planetary systems in young and dense star clusters. VAN ELTEREN A., PORTEGIES ZWART S., PELUPESSY I., et al.
2019ApJ...877L..15K 281 T   A     X         6 2 ~ No evidence for lunar transit in new analysis of Hubble Space Telescope Observations of the
Kepler-1625 system.
2019ApJ...885..168O 43           X         1 40 ~ Sodium and potassium signatures of volcanic satellites orbiting close-in gas giant exoplanets. OZA A.V., JOHNSON R.E., LELLOUCH E., et al.
2020ApJ...890...23L viz 17       D               1 4935 ~ Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2020AJ....159..131P 44           X         1 14 ~ Exploring whether super-puffs can be explained as ringed exoplanets. PIRO A.L. and VISSAPRAGADA S.
2020AJ....159..142T 783     A D     X C       18 4 ~ Loose ends for the exomoon candidate host
2020A&A...635A..59T 853     A     X C       19 3 ~ Radial velocity constraints on the long-period transiting planet
Kepler-1625 b with CARMENES.
2020A&A...635A.191M 17       D               2 42 ~ Spatial distribution of exoplanet candidates based on Kepler and Gaia data. MALIUK A. and BUDAJ J.
2020AJ....159..260R 392       S   X C       7 2 ~ Orbital stability of exomoons and submoons with applications to Kepler 1625b-I. ROSARIO-FRANCO M., QUARLES B., MUSIELAK Z.E., et al.
2020MNRAS.495.3763M 636     A     X C       14 4 ~ Exploring formation scenarios for the exomoon candidate
Kepler 1625b I.
2020AJ....160..108B viz 17       D               1 6855 ~ The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020AJ....160..194T 87             C       1 39 ~ Impact of tides on the potential for exoplanets to host exomoons. TOKADJIAN A. and PIRO A.L.
2021MNRAS.501.2378F 90           X         2 27 ~ Exomoon candidates from transit timing variations: eightKeplersystems with TTVs explainable by photometrically unseen exomoons. FOX C. and WIEGERT P.
2022MNRAS.510.2583M 93           X         2 2 ~ On the stability of additional moons orbiting Kepler-1625 b. MORAES R.A., BORDERES-MOTTA G., WINTER O.C., et al.
2022MNRAS.512.1032S 19       D               1 4 ~ Cronomoons: origin, dynamics, and light-curve features of ringed exomoons. SUCERQUIA M., ALVARADO-MONTES J.A., BAYO A., et al.
2022ApJ...929L...2T 187       S   X         3 4 ~ Probing Planets with Exomoons: The Cases of Kepler-1708 b and Kepler-1625 b. TOKADJIAN A. and PIRO A.L.
2022NatAs...6..367K 93             C       1 35 ~ An exomoon survey of 70 cool giant exoplanets and the new candidate Kepler-1708 b-i. KIPPING D., BRYSON S., BURKE C., et al.
2022A&A...662A..37H 47           X         1 3 ~ Pandora: A fast open-source exomoon transit detection algorithm. HIPPKE M. and HELLER R.

goto View the references in ADS


© Université de Strasbourg/CNRS

    • Contact