Kepler-107c , the SIMBAD biblio

Kepler-107c , the SIMBAD biblio (45 results) C.D.S. - SIMBAD4 rel 1.8 - 2023.03.22CET04:54:43


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2012Natur.486..375B viz 16       D               1 378 334 An abundance of small exoplanets around stars with a wide range of metallicities. BUCHHAVE L.A., LATHAM D.W., JOHANSEN A., et al.
2012ApJ...756..185F viz 16       D               1 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2013ApJS..204...24B viz 16       D               1 3274 779 Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. BATALHA N.M., ROWE J.F., BRYSON S.T., et al.
2013ApJ...767..127H viz 16       D               1 189 177 Fundamental properties of Kepler planet-candidate host stars using asteroseismology. HUBER D., CHAPLIN W.J., CHRISTENSEN-DALSGAARD J., et al.
2013ApJ...775...53H 16       D               1 93 126 Testing in situ assembly with the Kepler planet candidate sample. HANSEN B.M.S. and MURRAY N.
2014ApJS..210...19B viz 16       D               1 5860 162 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014ApJ...783....4W viz 16       D               1 487 55 Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 AU and validation of four planets from the Kepler multiple planet candidates. WANG J., XIE J.-W., BARCLAY T., et al.
2014ApJ...784...45R viz 16       D               1 1691 227 Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ROWE J.F., BRYSON S.T., MARCY G.W., et al.
2014ApJ...790..146F viz 16       D               1 918 322 Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates. FABRYCKY D.C., LISSAUER J.J., RAGOZZINE D., et al.
2015ApJS..217...16R viz 16       D               1 8625 84 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015ApJ...808..126V 96       D     X         3 105 85 Eccentricity from transit photometry: small planets in Kepler multi-planet systems have low eccentricities. VAN EYLEN V. and ALBRECHT S.
2016AJ....152..158T viz 16       D               1 4387 18 Detection of potential transit signals in 17 quarters of Kepler data: results of the final Kepler mission transiting planet search (DR25). TWICKEN J.D., JENKINS J.M., SEADER S.E., et al.
2017AJ....154..108J viz 16       D               1 3237 46 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2018AJ....155...48W viz 17       D               1 911 22 The California-Kepler survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced. WEISS L.M., MARCY G.W., PETIGURA E.A., et al.
2018MNRAS.479.4786V 17       D               1 117 42 An asteroseismic view of the radius valley: stripped cores, not born rocky. VAN EYLEN V., AGENTOFT C., LUNDKVIST M.S., et al.
2018ApJ...866...99B viz 17       D               1 7129 101 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018AJ....156..254W viz 17       D               2 1269 ~ The California-Kepler Survey. VI. Kepler multis and singles have similar planet and stellar properties indicating a common origin. WEISS L.M., ISAACSON H.T., MARCY G.W., et al.
2018AJ....156..264F viz 17       D               1 1909 112 The California-Kepler Survey. VII. Precise planet radii leveraging Gaia DR2 reveal the stellar mass dependence of the Planet radius gap. FULTON B.J. and PETIGURA E.A.
2019RAA....19...41G viz 17       D               1 1982 ~ Transit timing variations and linear ephemerides of confirmed Kepler transiting exoplanets. GAJDOS P., VANKO M. and PARIMUCHA S.
2019ApJ...875...29M viz 17       D               1 2918 ~ A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2019AJ....157..171K viz 17       D               1 4069 ~ Visual analysis and demographics of Kepler transit timing variations. KANE M., RAGOZZINE D., FLOWERS X., et al.
2019NatAs...3..416B 1022     A D     X C       24 8 ~ A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system. BONOMO A.S., ZENG L., DAMASSO M., et al.
2019AJ....158..108A 17       D               1 11 ~ Signatures of obliquity in thermal phase curves of hot Jupiters. ADAMS A.D., MILLHOLLAND S. and LAUGHLIN G.P.
2019ApJ...883...79D 43           X         1 19 ~ Homogeneous analysis of hot Earths: masses, sizes, and compositions. DAI F., MASUDA K., WINN J.N., et al.
2020MNRAS.491.5287O 17       D               1 61 ~ Testing exoplanet evaporation with multitransiting systems. OWEN J.E. and CAMPOS ESTRADA B.
2020A&A...634A..43O 61       D     X         2 141 ~ Revisited mass-radius relations for exoplanets below 120 M. OTEGI J.F., BOUCHY F. and HELLED R.
2020A&A...637A..13M viz 44           X         1 10 ~ High-resolution spectroscopy of flares and CMEs on AD Leonis. MUHEKI P., GUENTHER E.W., MUTABAZI T., et al.
2020MNRAS.496.1166D 174           X         4 5 ~ Atmosphere loss in planet-planet collisions. DENMAN T.R., LEINHARDT Z.M., CARTER P.J., et al.
2020AJ....160..108B viz 17       D               1 6855 ~ The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020A&A...641A..92T viz 131           X         3 8 ~ Characterization of the K2-38 planetary system. Unraveling one of the densest planets known to date. TOLEDO-PADRON B., LOVIS C., SUAREZ MASCARENO A., et al.
2020MNRAS.499..932P 61       D     X         2 40 ~ Chemical fingerprints of formation in rocky super-Earths' data. PLOTNYKOV M. and VALENCIA D.
2020PASP..132j2001H 131           X         3 47 ~ Solar system physics for Exoplanet research. HORNER J., KANE S.R., MARSHALL J.P., et al.
2021MNRAS.504.4634G 493     A D S   X C F     9 38 ~ Caught in the act: core-powered mass-loss predictions for observing atmospheric escape. GUPTA A. and SCHLICHTING H.E.
2021A&A...652A.110L 18       D               1 82 ~ Why do more massive stars host larger planets? LOZOVSKY M., HELLED R., PASCUCCI I., et al.
2021ApJ...921...24S 18       D               1 328 ~ The occurrence-weighted median planets discovered by transit surveys orbiting solar-type stars and their implications for planet formation and evolution. SCHLAUFMAN K.C. and HALPERN N.D.
2021Sci...374..330A 45           X         1 47 ~ A compositional link between rocky exoplanets and their host stars. ADIBEKYAN V., DORN C., SOUSA S.G., et al.
2022AJ....163...13B 19       D               2 165 ~ Period ratio sculpting near second-order mean-motion resonances. BAILEY N., GILBERT G. and FABRYCKY D.
2022A&A...657A..68A viz 47           X         1 9 ~ The HD 137496 system: A dense, hot super-Mercury and a cold Jupiter. AZEVEDO SILVA T., DEMANGEON O.D.S., BARROS S.C.C., et al.
2022MNRAS.510.2041C 47           X         1 74 ~ The GALAH Survey: improving our understanding of confirmed and candidate planetary systems with large stellar surveys. CLARK J.T., WRIGHT D.J., WITTENMYER R.A., et al.
2022MNRAS.513.1680D 93           X         2 5 ~ Atmosphere loss in oblique Super-Earth collisions. DENMAN T.R., LEINHARDT Z.M. and CARTER P.J.
2022A&A...662A..19J 93               F     1 12 ~ Nucleation and growth of iron pebbles explains the formation of iron-rich planets akin to Mercury. JOHANSEN A. and DORN C.
2022A&A...665A.154B viz 93           X         2 32 ~ HD 23472: a multi-planetary system with three super-Earths and two potential super-Mercuries,. BARROS S.C.C., DEMANGEON O.D.S., ALIBERT Y., et al.
2022ApJ...940..144S 93           X         2 5 ~ Rocky Histories: The Effect of High Excitations on the Formation of Rocky Planets. SCORA J., VALENCIA D., MORBIDELLI A., et al.
2023AJ....165...47E 50           X         1 35 ~ TOI-1075 b: A Dense, Massive, Ultra-short-period Hot Super-Earth Straddling the Radius Gap. ESSACK Z., SHPORER A., BURT J.A., et al.
2023ApJ...944...42U 20       D               1 56 ~ The Nominal Ranges of Rocky Planet Masses, Radii, Surface Gravities, and Bulk Densities. UNTERBORN C.T., DESCH S.J., HALDEMANN J., et al.

goto View the references in ADS


2023.03.22-04:54:43

© Université de Strasbourg/CNRS

    • Contact