other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
Kepler-107c , the SIMBAD biblio (45 results) | C.D.S. - SIMBAD4 rel 1.8 - 2023.03.22CET04:54:43 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2012Natur.486..375B ![]() |
16 | D | 1 | 378 | 334 | An abundance of small exoplanets around stars with a wide range of metallicities. | BUCHHAVE L.A., LATHAM D.W., JOHANSEN A., et al. | ||
2012ApJ...756..185F ![]() |
16 | D | 1 | 1856 | 44 | Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. | FORD E.B., RAGOZZINE D., ROWE J.F., et al. | ||
2013ApJS..204...24B ![]() |
16 | D | 1 | 3274 | 779 | Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. | BATALHA N.M., ROWE J.F., BRYSON S.T., et al. | ||
2013ApJ...767..127H ![]() |
16 | D | 1 | 189 | 177 | Fundamental properties of Kepler planet-candidate host stars using asteroseismology. | HUBER D., CHAPLIN W.J., CHRISTENSEN-DALSGAARD J., et al. | ||
2013ApJ...775...53H | 16 | D | 1 | 93 | 126 | Testing in situ assembly with the Kepler planet candidate sample. | HANSEN B.M.S. and MURRAY N. | ||
2014ApJS..210...19B ![]() |
16 | D | 1 | 5860 | 162 | Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). | BURKE C.J., BRYSON S.T., MULLALLY F., et al. | ||
2014ApJ...783....4W ![]() |
16 | D | 1 | 487 | 55 | Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 AU and validation of four planets from the Kepler multiple planet candidates. | WANG J., XIE J.-W., BARCLAY T., et al. | ||
2014ApJ...784...45R ![]() |
16 | D | 1 | 1691 | 227 | Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. | ROWE J.F., BRYSON S.T., MARCY G.W., et al. | ||
2014ApJ...790..146F ![]() |
16 | D | 1 | 918 | 322 | Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates. | FABRYCKY D.C., LISSAUER J.J., RAGOZZINE D., et al. | ||
2015ApJS..217...16R ![]() |
16 | D | 1 | 8625 | 84 | Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). | ROWE J.F., COUGHLIN J.L., ANTOCI V., et al. | ||
2015ApJ...808..126V | 96 | D | X | 3 | 105 | 85 | Eccentricity from transit photometry: small planets in Kepler multi-planet systems have low eccentricities. | VAN EYLEN V. and ALBRECHT S. | |
2016AJ....152..158T ![]() |
16 | D | 1 | 4387 | 18 | Detection of potential transit signals in 17 quarters of Kepler data: results of the final Kepler mission transiting planet search (DR25). | TWICKEN J.D., JENKINS J.M., SEADER S.E., et al. | ||
2017AJ....154..108J ![]() |
16 | D | 1 | 3237 | 46 | The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. | JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al. | ||
2018AJ....155...48W ![]() |
17 | D | 1 | 911 | 22 | The California-Kepler survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced. | WEISS L.M., MARCY G.W., PETIGURA E.A., et al. | ||
2018MNRAS.479.4786V | 17 | D | 1 | 117 | 42 | An asteroseismic view of the radius valley: stripped cores, not born rocky. | VAN EYLEN V., AGENTOFT C., LUNDKVIST M.S., et al. | ||
2018ApJ...866...99B ![]() |
17 | D | 1 | 7129 | 101 | Revised radii of Kepler stars and planet's using Gaia Data Release 2. | BERGER T.A., HUBER D., GAIDOS E., et al. | ||
2018AJ....156..254W ![]() |
17 | D | 2 | 1269 | ~ | The California-Kepler Survey. VI. Kepler multis and singles have similar planet and stellar properties indicating a common origin. | WEISS L.M., ISAACSON H.T., MARCY G.W., et al. | ||
2018AJ....156..264F ![]() |
17 | D | 1 | 1909 | 112 | The California-Kepler Survey. VII. Precise planet radii leveraging Gaia DR2 reveal the stellar mass dependence of the Planet radius gap. | FULTON B.J. and PETIGURA E.A. | ||
2019RAA....19...41G ![]() |
17 | D | 1 | 1982 | ~ | Transit timing variations and linear ephemerides of confirmed Kepler transiting exoplanets. | GAJDOS P., VANKO M. and PARIMUCHA S. | ||
2019ApJ...875...29M ![]() |
17 | D | 1 | 2918 | ~ | A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. | MARTINEZ C.F., CUNHA K., GHEZZI L., et al. | ||
2019AJ....157..171K ![]() |
17 | D | 1 | 4069 | ~ | Visual analysis and demographics of Kepler transit timing variations. | KANE M., RAGOZZINE D., FLOWERS X., et al. | ||
2019NatAs...3..416B | 1022 | A | D | X C | 24 | 8 | ~ | A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system. | BONOMO A.S., ZENG L., DAMASSO M., et al. |
2019AJ....158..108A | 17 | D | 1 | 11 | ~ | Signatures of obliquity in thermal phase curves of hot Jupiters. | ADAMS A.D., MILLHOLLAND S. and LAUGHLIN G.P. | ||
2019ApJ...883...79D | 43 | X | 1 | 19 | ~ | Homogeneous analysis of hot Earths: masses, sizes, and compositions. | DAI F., MASUDA K., WINN J.N., et al. | ||
2020MNRAS.491.5287O | 17 | D | 1 | 61 | ~ | Testing exoplanet evaporation with multitransiting systems. | OWEN J.E. and CAMPOS ESTRADA B. | ||
2020A&A...634A..43O | 61 | D | X | 2 | 141 | ~ | Revisited mass-radius relations for exoplanets below 120 M⊕. | OTEGI J.F., BOUCHY F. and HELLED R. | |
2020A&A...637A..13M ![]() |
44 | X | 1 | 10 | ~ | High-resolution spectroscopy of flares and CMEs on AD Leonis. | MUHEKI P., GUENTHER E.W., MUTABAZI T., et al. | ||
2020MNRAS.496.1166D | 174 | X | 4 | 5 | ~ | Atmosphere loss in planet-planet collisions. | DENMAN T.R., LEINHARDT Z.M., CARTER P.J., et al. | ||
2020AJ....160..108B ![]() |
17 | D | 1 | 6855 | ~ | The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. | BERGER T.A., HUBER D., GAIDOS E., et al. | ||
2020A&A...641A..92T ![]() |
131 | X | 3 | 8 | ~ | Characterization of the K2-38 planetary system. Unraveling one of the densest planets known to date. | TOLEDO-PADRON B., LOVIS C., SUAREZ MASCARENO A., et al. | ||
2020MNRAS.499..932P | 61 | D | X | 2 | 40 | ~ | Chemical fingerprints of formation in rocky super-Earths' data. | PLOTNYKOV M. and VALENCIA D. | |
2020PASP..132j2001H | 131 | X | 3 | 47 | ~ | Solar system physics for Exoplanet research. | HORNER J., KANE S.R., MARSHALL J.P., et al. | ||
2021MNRAS.504.4634G | 493 | A | D | S X C F | 9 | 38 | ~ | Caught in the act: core-powered mass-loss predictions for observing atmospheric escape. | GUPTA A. and SCHLICHTING H.E. |
2021A&A...652A.110L | 18 | D | 1 | 82 | ~ | Why do more massive stars host larger planets? | LOZOVSKY M., HELLED R., PASCUCCI I., et al. | ||
2021ApJ...921...24S | 18 | D | 1 | 328 | ~ | The occurrence-weighted median planets discovered by transit surveys orbiting solar-type stars and their implications for planet formation and evolution. | SCHLAUFMAN K.C. and HALPERN N.D. | ||
2021Sci...374..330A | 45 | X | 1 | 47 | ~ | A compositional link between rocky exoplanets and their host stars. | ADIBEKYAN V., DORN C., SOUSA S.G., et al. | ||
2022AJ....163...13B | 19 | D | 2 | 165 | ~ | Period ratio sculpting near second-order mean-motion resonances. | BAILEY N., GILBERT G. and FABRYCKY D. | ||
2022A&A...657A..68A ![]() |
47 | X | 1 | 9 | ~ | The HD 137496 system: A dense, hot super-Mercury and a cold Jupiter. | AZEVEDO SILVA T., DEMANGEON O.D.S., BARROS S.C.C., et al. | ||
2022MNRAS.510.2041C | 47 | X | 1 | 74 | ~ | The GALAH Survey: improving our understanding of confirmed and candidate planetary systems with large stellar surveys. | CLARK J.T., WRIGHT D.J., WITTENMYER R.A., et al. | ||
2022MNRAS.513.1680D | 93 | X | 2 | 5 | ~ | Atmosphere loss in oblique Super-Earth collisions. | DENMAN T.R., LEINHARDT Z.M. and CARTER P.J. | ||
2022A&A...662A..19J | 93 | F | 1 | 12 | ~ | Nucleation and growth of iron pebbles explains the formation of iron-rich planets akin to Mercury. | JOHANSEN A. and DORN C. | ||
2022A&A...665A.154B ![]() |
93 | X | 2 | 32 | ~ | HD 23472: a multi-planetary system with three super-Earths and two potential super-Mercuries,. | BARROS S.C.C., DEMANGEON O.D.S., ALIBERT Y., et al. | ||
2022ApJ...940..144S | 93 | X | 2 | 5 | ~ | Rocky Histories: The Effect of High Excitations on the Formation of Rocky Planets. | SCORA J., VALENCIA D., MORBIDELLI A., et al. | ||
2023AJ....165...47E | 50 | X | 1 | 35 | ~ | TOI-1075 b: A Dense, Massive, Ultra-short-period Hot Super-Earth Straddling the Radius Gap. | ESSACK Z., SHPORER A., BURT J.A., et al. | ||
2023ApJ...944...42U | 20 | D | 1 | 56 | ~ | The Nominal Ranges of Rocky Planet Masses, Radii, Surface Gravities, and Bulk Densities. | UNTERBORN C.T., DESCH S.J., HALDEMANN J., et al. |
© Université de Strasbourg/CNRS
• Contact